5G系統需求(eMBB、mMTC、URLLC),而毫米波頻段可以構建高達800MHz的超大帶寬通信系統,通信速率高達10Gbit/s,3GPP在2016年初公布了毫米波信道模型的技術報告明確了毫米波頻段作為5G戶外通信頻段的可行性。目前美國、韓國、日本等國家已陸續完成5G高頻頻譜的劃分與拍賣
2019-11-20 16:58:276514 注意到5 g 是由幾個不同的性能級別組成的。5 g 網絡由以下部分組成:低頻帶范圍(600兆赫至3ghz)中頻范圍(3吉赫至6吉赫)毫米波范圍(> 10Ghz)或毫米波新的和現有的5g 部署主要
2022-04-10 21:31:45
業界普遍認為,混合波束賦形將是工作在微波和毫米波頻率的5G系統的首選架構。這種架構綜合運用數字 (MIMO) 和模擬波束賦形來克服高路徑損耗并提高頻譜效率。如圖1所示,m個數據流的組合分割到n條RF
2019-06-12 06:55:46
控制信道,不能用來發送數據,這些系統控制用掉的資源就叫做“開銷”。5G低頻和中頻的下行理論開銷為14%,上行為8%;毫米波的下行開銷為18%,上行為10%。
毫米波計算(示例)有了上面的這些信息
2023-05-06 14:34:55
三種高階5G使用案例(圖1)的目標是隨時隨地提供可用的移動寬帶數據,然而,僅僅提升4G架構網絡的頻譜效率,并不足以提供所需數據速率的步階函數。有鑒于此,研究人員正致力于研究更高的頻率,希望得到可行
2019-07-11 06:20:51
運營商、設備廠商和芯片廠商正在齊心協力地推動第五代移動通信標準(即5G)的制定。5G是現在4G(也稱為長期演進項目,Long term evolution,即LTE)移動通信標準的下一代,5G
2019-07-11 07:46:45
已經形成共識,除了現有第四代行動通訊技術的持續演進之外;也定義了另一條使用毫米波頻段革命性技術發展的道路(如圖3 所示)。圖2、Approaches of increasing Traffic Capacity圖3、3GPP 5G Standardization Time Line
2019-07-11 06:52:45
5G毫米波是如何引入的?毫米波有哪些致命弱點?5G的超高下載速率是怎么做到的?5G毫米波是怎么揚長和避短的?
2021-06-17 07:23:56
個關鍵的提升就是能夠利用更多的頻譜資源來滿足不同種類的業務需求,其中就包括使用毫米波的頻段資源來實現極高帶寬和極低時延。
隨著業務對帶寬需求的不斷增加,通信頻譜不斷向更高頻譜延伸,5G毫米波具有
2023-05-05 10:49:47
【摘要】本文首先介紹了全球毫米波頻譜劃分情況,然后通過對毫米波特性的分析,總結了毫米波終端將面臨的技術挑戰,著重介紹了終端側大規模天線技術、毫米波射頻前端技術的研究進展,并根據毫米波終端的特點分析了
2019-07-18 08:04:55
本文作者陳文江:工研院資通所新興無線應用技術組副組長、M300部門經理,***經濟部技術處5G科研計劃“高頻段接入技術”計劃的主持人。摘要:隨著各種移動多媒體影音應用在手機平臺越來越普及,手機用戶
2019-07-10 07:46:56
三大運營商5G頻譜劃分方案
2020-12-21 06:07:34
在目前大部分5G原型演示系統中,都采用毫米波MIMO技術,而這種技術對于毫米波天線開關也有著極為嚴苛的高標準。MACOM推出SMT封裝的MASW-011098毫米波天線開關利用該公司專利的砷化鋁鎵
2019-02-15 10:04:31
剖析MWC 上發布的具有代表性的5G產品之外,還將深入探討:高性能5G 毫米波OTA 測試5G毫米波與sub-6GHz 特性與量產挑戰C-V2X 概觀:新用戶 場景以及測試影響Wi-Fi 6最新進展
2019-04-22 12:01:51
明確了,毫米波是5G通訊中的一部分,是5G通訊中的兩大主要頻段之一,它所帶給5G的不止是極快的網絡速度,更是5G差異化體驗的重要組成部分。毫米波作為5G技術中難度最高的,或許在5G初期不太被重視,但缺了毫米波的5G,無疑是沒有靈魂的5G了。`
2020-03-12 14:10:38
,與工業設施、醫療儀器、車聯網等深度融合,有效滿足工業、醫療、交通等行業的多樣化業務需求,實現真正的“萬物互聯”。高頻段毫米波在5G通信中具有顯著的優勢,如足夠的帶寬、小型化的天線和設備、較高的天線增益
2019-05-28 08:00:41
5G標準對射頻影響較大,需要一系列新的射頻芯片技術來支持,例如支持相控天線的毫米波技術。毫米波技術最早應用在航空軍工領域,如今汽車雷達、60GHz Wi-Fi都已經采用,將來5G也必然會采用。運營商
2019-06-19 08:14:33
,無線吞吐量和容量會呈現爆發式增長。在短期內,我們將看到Sub-6GHz無線基礎設施開始部署,以彌補現有4GLTE網絡與未來毫米波(mmW)5G實施方案之間的帶寬差距,后者采用的頻率要遠遠高于6GHz。
2019-08-02 08:28:19
加快,無線吞吐量和容量會呈現爆發式增長。在短期內,我們將看到Sub-6GHz無線基礎設施開始部署,以彌補現有4GLTE網絡與未來毫米波(mmW)5G實施方案之間的帶寬差距,后者采用的頻率要遠遠
2017-08-03 16:28:14
`為了適應5G移動通信所需的高吞吐率和低延遲要求,業界正在擴展5G通信系統的工作頻段到毫米波的范疇。另外為了實現更遠的傳輸距離以及更高的頻譜利用率,在系統的收發端需要有支持多個天線陣元(數十或數百
2018-07-23 10:51:32
用于增加網絡速度和容量的帶寬。因其極寬的帶寬和大量可用的頻譜,毫米波能提供極致數據傳輸速度和容量。在今年的 2017 Qualcomm 4G/5G 峰會上,Qualcomm 宣布成功基于驍龍 X50
2017-12-01 09:17:58
預料會比 4G LTE 快上至少 40 倍,全球覆蓋范圍至少多出 4 倍。 5G 預料將使用所謂的“毫米波”無線電頻譜(頻率超過 24GHz)。隨著 FCC 的動作,美國成為第一個大量開放這種頻譜供
2017-08-03 16:38:07
5G調制信號與連續波信號使用近場測量電場和磁場的解耦法進行功率密度評估 摘要——基于新型5G技術,保證了新一代通信快速而可靠的數據轉換。為增強無線網絡的質量,最新的技術正在開發中。其中最突出
2022-03-29 15:41:33
`一、5G頻段增加帶寬是增加容量和傳輸速率最直接的方法,目前5G最大帶寬將會達到400MHz,考慮到目前頻率占用情況,5G將不得不使用高頻進行通信。3GPP協議定義了從Sub6G(FR1)到毫米波
2020-03-10 13:52:09
[導讀]5G通信正在緊鑼密鼓地研發之中,而毫米波MIMO是其中關鍵技術之一。在目前大部分5G原型演示系統中,都采用了這種技術,而這種技術對于毫米波天線開關也有著極為嚴苛的高標準。MACOM最新推出
2019-06-19 06:58:04
毫米波究竟是什么,為什么這么重要?
2020-12-03 07:53:53
毫米波的應用越來越多,對于毫米波,大家也有些許了解。5G 毫米波、毫米波雷達都是我們耳熟能詳的技術,但除此以外,大家對毫米波還有更多的認識嗎?本文中,小編將對四路毫米波空間功率合成技術加以講解,以
2020-11-05 09:43:08
本文對毫米波技術在 5G 及其演進中的作用進行了簡要概述。首先,分析了目前 5G 商用毫米波大規模 MIMO 系統的基本架構和主要問題,同時介紹了高性能的全數字多波束架構;其次,探討了毫米波技術
2021-03-08 08:40:30
,包括碳化硅(SiC)和氮化鎵(GaN) ,以及相關的較低制造成本,正在將毫米波通信帶入地面,掩膜市場的消費應用,如5G NR。低延遲通信網絡中的延遲可以有多種含義。關于單向通信,延遲是從源發送數據包到
2022-07-29 22:43:59
也可達135GHz,為微波以下各波段帶寬之和的5 倍。這在頻率資源緊張的今天無疑極具吸引力。 2)波束窄。在相同天線尺寸下毫米波的波束要比微波的波束窄得多。例如一個 12cm的天線,在9.4GHz
2019-07-03 08:13:34
業界普遍認為,混合波束賦形(例如圖1所示)將是工作在微波和毫米波頻率的5G系統的首選架構。這種架構綜合運用數字 (MIMO) 和模擬波束賦形來克服高路徑損耗并提高頻譜效率。如圖1所示,m個數
2019-07-11 07:57:45
毫米波是什么毫米波移動化頻譜的另一端:6 GHz以下頻段
2021-01-28 07:08:27
5G如何實現如此高的傳輸速率呢?毫米波是什么?其特點有哪些?
2021-05-06 06:22:29
的測量能力提高和功能增強因此也有了保障。由于設計和測量方法變得愈加高效,毫米波設計的成本效益越來越高,被許多人考慮作為各種應用的解決方案,覆蓋了從汽車巡航控制系統和機場威脅檢測成像系統到高數據速率的個人
2019-06-24 08:21:24
隨著移動通信的迅猛發展,低頻段頻譜資源的開發已經非常成熟,剩余的低頻段頻譜資源已經不能滿足5G時代10Gbps的峰值速率需求,因此未來5G系統需要在毫米波頻段上尋找可用的頻譜資源。作為5G關鍵技術
2021-01-08 07:49:38
發展為主動安全提供了技術可行性,汽車微波/毫米波雷達傳感器正是實現該功能的核心部件之一。微波/毫米波雷達是利用目標對電磁波反射來發現目標并測定其位置的。毫米波頻率高、波長短,一方面可縮小從天線輻射的電磁波射
2018-08-04 09:16:48
所謂的毫米波是無線電波中的一段,我們把波長為1~10毫米的電磁波稱毫米波,它位于微波與遠紅外波相交疊的波長范圍,因而兼有兩種波譜的特點。毫米波的理論和技術分別是微波向高頻的延伸和光波向低頻的發展。
2019-08-02 08:49:32
毫米波雷達的特點、優點、缺點;毫米波雷達測距原理,測速原理,角速度測量原理;毫米波雷達系統架構。 毫米波雷達:ADAS/自動駕駛核心傳感器毫米波的波長介于厘米波和光波之間, 因此毫米波兼有微波制導
2021-07-30 08:05:28
日本)采用60GHz頻段。由于77G相對于24G的諸多優勢,未來全球車載毫米波雷達的頻段會趨同于77GHz頻段(76-81GHz)?! ≤囕d毫米波雷達的原理 車載毫米波雷達通過天線向外發射毫米波
2019-12-16 11:09:32
。滿足這些要求就意味著網絡和設備需要做出改變,以適應更高的信道帶寬,更密集的波形和不同的用戶特性,并逐步向毫米波頻段推進。 在這一進程中,如何解讀最新的3GPP標準,順利完成5G端到端性能評估
2019-08-26 15:17:30
了解毫米波 -- 之一
毫米波技術在軍用、雷達等領域已經有多年的應用。在民用領域,也隨著最近的5G移動通信、民用衛星通信,以及車載毫米波雷達等應用的普及,逐漸走進了大眾的視野。
我國工信部近日在
2023-05-05 11:22:19
手機
毫米波相控陣技術離我們并不遙遠,不少5G手機中已經裝備了此項技術。
在2020年10月份,蘋果公司發布的iPhone 12中,北美版本中就加入了毫米波支持。iPhone 12采用高通的毫米波方案
2023-05-08 10:54:25
(長期演進)一樣,描述了4G無線標準。需要LTE以外的新的無線接入技術(RAT)它必須足夠靈活,以支持從高達100GHz的小于6GHz到毫米波(mmWave)頻帶的更寬范圍的頻帶。已經選擇了基于OFDM
2017-05-03 11:34:31
5G毫米波OTA測試方案,該測量套件專為毫米波通信頻段的空口(OTA)測試和測量而設計,以具有成本效益的價格提供卓越的質量和性能,涵蓋24-40GHz(或43GHz)頻譜中的5G毫米波頻段。該套件采用
2021-11-19 08:00:00
雙通道 AD/DA轉換器 AD9172/AD9208 應用于毫米波無線電:從位到毫米波、從毫米波到位
2021-02-19 06:36:03
(DDS)技術,提出毫米波頻率合成器的設計方案。進行方案系統實驗,結果表明,相位噪聲為-85dBc/Hz@10kHz,提升了整個毫米波通信系統的性能?!娟P鍵詞】:毫米波;;頻率合成;;相位噪聲;;頻率
2010-04-22 11:47:22
向5G移動網絡的推進不斷加快,無線吞吐量和容量會呈現爆發式增長。在短期內,我們將看到Sub-6 GHz無線基礎設施開始部署,以彌補現有4G LTE網絡與未來毫米波(mmW)5G實施方案之間的帶寬差距
2019-06-18 07:19:25
使用PSA頻譜分析儀進行外部波導混頻和毫米波測量(AN 1485)
2019-10-28 09:07:54
、37GHz、39GHz和64-71GHz頻段的新靈活服務規則(如圖2所示)。
圖2. FCC提議用于移動通信的毫米波頻段
盡管ITU、3GPP等標準機構將2020年定為對5G標準進行
2023-05-05 09:52:51
剖析MWC 上發布的具有代表性的5G產品之外,還將深入探討: 高性能5G 毫米波OTA 測試 5G毫米波與sub-6GHz 特性與量產挑戰 C-V2X 概觀:新用戶 場景以及測試影響Wi-Fi 6
2019-04-22 13:43:31
在之前的文章(《如何實現比4G快十倍?毫米波技術是5G的關鍵》)中我們介紹了如何利用毫米波技術獲得更多的頻譜資源,接下來的問題是如何充分利用這些頻譜資源——如何讓多個用戶通訊但又互不干擾,專業術語叫做頻譜復用。圖片來源:Phoenix
2019-07-11 07:09:25
如何應對毫米波測試的挑戰?
2021-05-10 06:44:10
科技的發展,越來越多的行業和應用開始使用毫米波的頻率。5G — 隨著智能手機用戶的增加和各種手機應用軟件的發展,對無線數據傳輸速率的要求與日俱增。原有的頻譜資源已經非常擁擠,不能滿足這些需求,急需新的頻譜資源
2017-04-14 11:57:45
傳輸線損耗和相位變化等電路效應,因此在5G微波和毫米波功率放大器中,對于波長較短、頻率較高的電路指定的任何電路材料,銅表面粗糙度應盡可能小。
例如,Rogers提供了兩種不同頻率范圍所需的厚度和其他特性
2023-04-28 11:44:44
針對5G毫米波通信系統對本振源頻率、相位噪聲、雜散抑制要求的提升,提出了一種結合ADF4002 和2 個ADF5355 頻率合成器芯片,可同時用于中頻和射頻電路的高性能本振源。
2021-06-10 06:09:26
,在微波和毫米波頻段中傳輸,以支持高達10 Gbps的峰值數據速率,和不到1 ms的往返延遲。這個組合式網絡也許能支持各類的情境,包含簡單的機器對機器(M2M)設備,或是沉浸式虛擬現實串流。5G技術預計
2019-08-09 06:52:28
基于NXP的77G毫米波雷達之先進輔助駕駛系統有哪些核心技術優勢?怎樣去設計一種基于NXP的77G毫米波雷達之先進輔助駕駛系統的電路?
2021-07-30 07:19:43
了重要貢獻,從此開啟了后續毫米波雷達在各個領域廣泛應用的八十年。英國本土鏈”雷達在車載毫米波雷達研究方面,歐美國家也一直走在世界前列,博世、大陸、海拉等幾家公司壟斷全球市場。毫米波雷達在汽車領域
2022-03-09 10:24:55
澳洲電訊、英特爾合作進行5G數據通訊實驗。9月初,愛立信還宣布,在其5G硬件和軟件產品組合中將增加三款新產品,包括4G和5G頻段之間的頻譜共享、毫米波部署方案中的微宏站傳輸解決方案以及無線接入網
2018-09-11 08:18:22
2023-02-21 臺北訊圖說:稜研科技與NI共同推出毫米波通訊原型設計解決方案,整合 NI Ettus USRP X410 與稜研科技 UD Box 5G 變頻器和 BBox 5G 波束成形器
2023-02-21 13:44:53
毫米波雷達是測量被測物體相對距離、現對速度、方位的高精度傳感器,早期被應用于軍事領域,隨著雷達技術的發展與進步,毫米波雷達傳感器開始應用于汽車電子、無人機、智能交通等多個領域。
2019-08-07 08:01:28
~81GHz車用毫米波雷達研究試驗工作,驗證雷達性能參數、頻率需求等各類技術指標,為中國車載雷達頻率規劃和WRC-19 1.12議題中國提案工作提供了技術參考,推動了車載雷達安全、可靠地應用于中國智能汽車和智慧
2019-05-10 06:20:23
本文介紹了適用于5G毫米波頻段等應用的新興SiC基GaN半導體技術。通過兩個例子展示了采用這種GaN工藝設計的MMIC的性能:Ka頻段(29.5至36GHz)10W的PA和面向5G應用的24至
2020-12-21 07:09:34
AWA-0219 有源天線創新者套件產品概述雙極化 64 元件毫米波至中頻有源天線創新者套件AWA-0219-PAK 是一款完整的毫米波至中頻雙極化天線設計,適用于毫米波 5G 無線電。該套件旨在
2024-01-02 15:18:30
隨著移動通信的迅猛發展,低頻段頻譜資源的開發已經非常成熟,剩余的低頻段頻譜資源已經不能滿足5G時代10Gbps的峰值速率需求,因此未來5G系統需要在毫米波頻段上尋找可用的頻譜資源。作為5G關鍵技術
2018-03-20 09:52:013326 據外媒報道,美國聯邦通信委員會(FCC)主席Ajit Pai表示,美國首輪5G高頻段毫米波頻譜拍賣將于11月開始,隨后在2019年將有更多頻譜進行拍賣。
2018-07-16 16:47:132987 頻譜,隨后拍賣了24GHz頻段頻譜。預計到2019年,FCC還將再拍賣三個毫米波頻段,分別是37GHz、39GHz和47GHz。FCC主席表示,這些頻段對于部署5G至關重要。
2019-05-04 16:01:00824 FCC的公告顯示,目前已有2016個許可證臨時中標,競標金額達到36,428,510美元。此外,尚有1056個許可證尚未收到競標。
直到拍賣全部結束,FCC才會公布中標者。
2018-11-16 09:28:091678 美國聯邦通信委員會(FCC)本周正在進行的毫米波(mmWave)頻譜拍賣的總出價突破了15億美元的大關,自周一開始以來,拍賣活動的節奏從未放慢過。該頻段將用于5G網絡。
2019-12-16 10:38:232100 12月10日開始競標較高的37GHz、39GHz和47GHz頻段,FCC通過此次拍賣提供了3400MHz的毫米波頻譜,這是毫米波波段中可用的最大連續頻譜。今年早些時候已經拍賣了24GHz和28GHz
2019-12-16 10:56:34568 美國聯邦通信委員會(FCC)本周正在進行的毫米波(mmWave)頻譜拍賣的總出價突破了15億美元的大關,自周一開始以來,拍賣活動的節奏從未放慢過。該頻段將用于5G網絡。
2019-12-16 16:08:471935 2月25日消息,據國外媒體報道,美國聯邦通信委員會(FCC)公布了適用于5G網絡建設的3.7-3.98GHz頻譜的拍賣結果,電信運營商Verizon成為了最大贏家,獲得了超過6成的頻譜資源
2021-02-25 15:24:462008 對系統容量、傳輸速率和差異化應用等方面的更高的要求。國際電信聯盟(ITU)于2019年對5G毫米波頻段進行了明確規定,具體包括24.25-27.5GHz、37-43
2022-06-09 10:42:38
評論
查看更多