諧波與紋波的比較
諧波簡單地說,就是一定頻率的電壓或電流作用于非線性負載時,會產生不同于原頻率的其它頻率的正弦電壓或電流的現象。
??????? 紋波是指在直流電壓或電流中,疊加在直流穩定量上的交流分量。它們雖然在概念上不是一回事,但它們之間有聯系。如電源上附加的紋波在用電器上很容易產生各頻率的諧波;電源中各頻率諧波的存在無疑導致電源中紋波成分的增加。
??????? 除了在電路中我們所需要產生諧波的情況以外,它主要有以下主要危害:
1、使電網中發生諧振而造成過電流或過電壓而引發事故;
2、增加附加損耗,降低發電、輸電及用電設備的效率和設備利用率;
3、使電氣設備(如旋轉電機、電容器、變壓器等)運行不正常,加速絕緣老化,從而縮短它們的使用壽命;
4、使繼電保護、自動裝置、計算機系統及許多用電設備運轉不正?;虿荒苷幼骰虿僮?
5、使測量和計量儀器、儀表不能正確指示或計量;
6、干擾通信系統,降低信號的傳輸質量,破壞信號的正常傳遞,甚至損壞通信設備。
紋波的害處:
1、容易在用電器上產生諧波,而諧波會產生較多的危害;
2、降低了電源的效率;
3、較強的紋波會造成浪涌電壓或電流的產生,導致燒毀用電器;
4、會干擾數字電路的邏輯關系,影響其正常工作;
5、會帶來噪音干擾,使圖像設備、音響設備不能正常工作。
總之,它們在我們不需要的地方出現都是有害的,需要我們避免的。對于如何抑制和去除諧波和紋波的方式方法有很多,但想完全消除,似乎是很難辦到的,我們只有將其控制在一個允許的范圍之內,不對環境和設備產生影響就算達到了我們的目的。
近年來, 電力網中非線性負載的逐漸增加是全世界共同的趨勢,如變頻驅動或晶閘管整流直流驅動設備、計算機、重要負載所用的不間斷電源(UPS) 、節能熒光燈系統等,這些非線性負載將導致電網污染,電力品質下降,引起供用電設備故障, 甚至引發嚴重火災事故等。
電力污染及電力品質惡化主要表現在以下方面:電壓波動、浪涌沖擊、諧波、三相不平衡等。
1.電源 污染的危害
電源污染會對用電設備造成嚴重危害,主要有:
? 干擾通訊設備、計算機系統等電子設備的正常工作,造成數據丟失或死機。
? 影響無線電發射系統、雷達系統、核磁共振等設備的工作性能, 造成噪聲干擾和圖像紊亂。
? 引起電氣自動裝置誤動作,甚至發生嚴重事故。
? 使電氣設備過熱,振動和噪聲加大,加速絕緣老化,使用壽命縮短,甚至發生故障或燒毀。
? 造成燈光亮度的波動(閃變),影響工作效益。
? 導致供電系統功率損耗增加。
2.電源污染的種類
2.1 電壓波動及閃變
電壓波動是指多個正弦波的峰值,在一段時間內超過(低于)標準電壓值,大約從半周波到幾百個周波,即從10MS到2.5秒, 包括過壓波動和欠壓波動。普通避雷器和過電壓保護器,完全不能消除過壓波動,因為它們是用來消除瞬態脈沖的。普通避雷器在限壓動作時有相當大的電阻值,考慮到其額定熱容量(焦爾),這些裝置很容易被燒毀,而無法提供以后的保護功能。這種情況往往很容易忽視掉,這是導致計算機、控制系統和敏感設備故障或停機的主要原因。
另一個相反的情況是欠壓波動,它是指多個正弦波的峰值,在一段時間內低于標準電壓值,或如通常所說:晃動或降落。長時間的低電壓情況可能是由供電公司造成或由于用戶過負載造成,這種情況可能是事故現象或計劃安排。更為嚴重的是失壓,它大多是由于配電網內重負載的分合造成,例如大型電動機、中央空調系統、電弧爐等的啟停以及開關電弧、保險絲燒斷、斷路器跳閘等,這些都是通常導致電壓畸變的原因。
大型用電設備的頻繁啟動導致電壓的周期性波動,如電焊機、沖壓機、吊機、電梯等,這些設備需要短時沖擊功率,主要是無功功率。電壓波動導致設備功率不穩,產品質量下降;燈光的閃變引致眼睛疲勞,降低工作效率。
2.2 浪涌沖擊
浪涌沖擊是指系統發生短時過(低)電壓,即時間不超過1毫秒的電壓瞬時脈沖,這種脈沖可以是正極性或負極性,可以具有連串或振蕩性質。它們通常也被叫作:尖峰、缺口、干擾、毛刺或突變。
電網中的浪涌沖擊既可由電網內部大型設備(電機、電容器等)的投切或大型晶閘管的開斷引起,也可由外部雷電波的侵入造成。浪涌沖擊容易引起電子設備部件損壞,引起電氣設備絕緣擊穿;同時也容易導致計算機等設備數據出錯或死機。
2.3 諧波
線性負載,例如純電阻負載,其工作電流的波形與輸入電壓的正弦波形完全相同,非線性負載,例如斬波直流負載,其工作電流是非正弦波形。傳統的線性負載的電流/電壓只含有基波(50Hz),沒有或只有極小的諧波成分,而非線性負載會在電力系統中產生可觀的諧波。
諧波與電力系統中基波疊加,造成波形的畸變,畸變的程度取決于諧波電流的頻率和幅值。非線性負載產生陡峭的脈沖型電流,而不是平滑的正弦波電流,這種脈沖中的諧波電流引起電網電壓畸變,形成諧波分量,進而導致與電網相聯的其它負載產生更多的諧波電流。
計算機是此類非線性負載之一,象絕大多數辦公室電子設備一樣,計算機裝有一個二極管/電容型的供電電源,這類供電電源僅在交流正弦波電壓的峰值處產生電流,因此產生大量的三次諧波電流(150Hz)。其它產生諧波電流的設備主要有:電動機變頻調速器,固態加熱器,和其他一些產生非正弦波變化電流的設備。
熒光燈照明系統也是一個重要的諧波源,在普通的電磁整流器燈光電路中,三次諧波的典型值約為基波(50Hz)值的13%-20%。而在電子整流器燈光電路中,諧波分量甚至高達80%。
非線性負載所產生的諧波電流會影響電力系統的多個工作環節,包括變壓器,中性線,還有電動機,發電機和電容器等。諧波電流會導致變壓器,電動機和備用發電機的運行溫度(K參數)嚴重升高。中性線上的過電流(由諧波和不平衡引起)不僅會使導線溫度升高,造成絕緣損壞,而且會在三相變壓器線圈中產生環流,導致變壓器過熱。無功補償電容器會因電網電壓諧波畸變而產生過熱,諧波將導致嚴重過流;
另外,電容器還會與電力系統中的電感性元件形成諧振電路,這將導致電容器兩端的電壓明顯升高,引致嚴重故障。照明裝置的啟輝電容器對于由高頻電流引起的過熱也是十分敏感的,啟輝電容器的頻繁損壞顯示了電網中存在諧波的影響。諧波還會引起配電線路的傳輸效率下降,損耗增大,并干擾電力載波通訊系統的工作,如電能管理系統(EMS)和時鐘系統。而且,諧波還會使電力測量表計,有功需量表和電度表的計量誤差增大。
2.4 三相不平衡
三相不平衡會在中性線上產生過電流(由諧波和不平衡引起)不僅會使導線溫度升高,造成絕緣損壞,而且會在三相變壓器線圈中產生環流,導致變壓器過熱, 甚至引發嚴重火災事故等。
3.電源污染的治理
對于現有供電網絡或待建電網中的電力污染情況,要進行仔細分析,通常解決的方法有兩個:一是局部重組電網結構,分離或隔離產生電力污染的設備;二是使用電源凈化濾波設備進行治理,通常電壓諧波是由電流諧波產生的,有效地抑制電流諧波就會使電壓畸變達到要求的范圍。國內外很多單位已開始重視電源污染的治理, 投資安裝電源凈化濾波裝置, 取得了提高電源品質和節能的雙重效果。
電源污染的治理主要有以下幾種方法:
? 串聯電抗器
? 有源濾波補償
? 無源濾波補償
? 增加整流設備的相數
? 安裝各種突波吸收保護裝置,如避雷器等
目前,無源濾波補償是實際應用最多、效果較好、價格較低的解決方案,它包括三種基本形式:串聯濾波、并聯濾波和低通濾波(串并混合)。其中串聯濾波主要適用于三次諧波的治理;低通濾波主要適用于高次諧波的治理;并聯濾波是一種綜合裝置,它可濾除多次諧波,同時提供系統的無功功率,是應用最廣泛的電源凈化濾波裝置。
近年來,隨著電力電子技術的發展,有源濾波補償技術日益成熟,并得到了廣泛應用。較傳統的無源濾波補償系統,它具有功能多,適應性好及響應速度快等優點,隨著價格的不斷下降,應用將日益普遍。有源濾波補償系統在很多重要場所應用效果非常好。
不平衡電流的危害
電網中三相間的不平衡電流是普遍存在的,在城市民用電網及農用電網中由于大量單相負荷的存在,三相間的電流不平衡現象尤為嚴重。對于三相不平衡電流,除了盡量合理地分配負荷之外幾乎沒有什么行之有效的解決辦法。正因為找不到解決問題的有效辦法,因此反而不被人們所重視,也很少有人進行研究。
電網中的不平衡電流會增加線路及變壓器的銅損,增加變壓器的鐵損,降低變壓器的出力甚至會影響變壓器的安全運行,會造成三相電壓不平衡因而降低供電質量,甚至會影響電能表的精度而造成計量損失。
理論研究證明:在輸出同樣功率的情況下,三相電流平衡時變壓器及線路的銅損最小,也就是說:三相不平衡現象增加了變壓器及線路的銅損。
不平衡電流對系統銅損的影響
設某系統的三相線路及變壓器繞組的總電阻為R。如果三相電流平衡,IA=100A,IB=100A,IC=100A,則總銅損=1002R+1002R+1002R=30000R。
如果三相電流不平衡,IA=50A,IB=100A,IC=150A,則總銅損=502R+1002R+1502R=35000R,比平衡狀態的銅損增加了17%。
在更為嚴重的狀態下,如果IA=0A,IB=150A,IC=150A,則總銅損=1502R+1502R=45000R,比平衡狀態的銅損增加了50%。
在最嚴重的狀態下,如果IA=0A,IB=0A,IC=300A,則總銅損=3002R=90000R,比平衡狀態的銅損增加了3倍。
不平衡電流對變壓器的影響
現有的10/0.4KV的低壓配電變壓器多為Yyn0接法三相三柱鐵心的變壓器。這種類型的變壓器,當二次側負荷不平衡且有零線電流時,零線電流即為零序電流,而在一次側由于無中點引出線因此零序電流無法流通,故零序電流不能安匝平衡,對鐵心而言,有一個激磁零序電流,它受零序激磁阻抗控制,根據磁路的設計,這一零序激磁阻抗較大,零序電流使相電壓的對稱受到影響,中性點會偏移。由計算得知,當零線電流為額定電流的25%時,中性點移位約為額定電壓的7%。國家標準GB50052-95第6.08條規定: “當選用Yyn0結線組別的三相變壓器,其由單相不平衡負荷引起的電流不得超過低壓繞組額定電流的25%,且其中一相的電流在滿載時不得超過額定電流值?!庇捎谏鲜鲆幎ǎ拗屏薡yn0結線配電變壓器接用單相負荷的容量,也影響了變壓器設備能力的充分利用。并且,對三相三柱的磁路而言,零序磁通不能在磁路內成回路,必須在油箱壁及緊固件內形成回路,而油箱壁及緊固件內的磁通會產生較大的渦流損耗,因而使變壓器的鐵損增加。當零序電流過大導致零序磁通過大時,由于中性點漂移過大會引起某些相電壓過高而導致鐵心磁飽和,使鐵損急劇增加,加上緊固件過熱等因素,可能會發生任何一相電流均未過載而變壓器卻因局部過熱而損壞的事故。由于Yyn0結線組的配電變壓器與的零序激磁阻抗較大,因此零線電流會造成較大的電壓變化,形成比較嚴重的三相電壓不平衡現象,不但影響單相用戶,對三相用戶的影響更大 。
3 三相負荷不平衡的危害
3.1 對配電變壓器的影響
(1)三相負荷不平衡將增加變壓器的損耗:
變壓器的損耗包括空載損耗和負荷損耗。正常情況下變壓器運行電壓基本不變,即空載損耗是一個恒量。而負荷損耗則隨變壓器運行負荷的變化而變化,且與負荷電流的平方成正比。當三相負荷不平衡運行時,變壓器的負荷損耗可看成三只單相變壓器的負荷損耗之和。
從數學定理中我們知道:假設a、b、c 3個數都大于或等于零,那么a+b+c≥33√abc 。
當a=b=c時,代數和a+b+c取得最小值:a+b+c=33√abc 。
因此我們可以假設變壓器的三相損耗分別為:Qa=Ia2 R、Qb= Ib2 R 、Qc =Ic2 R,式中Ia、Ib、Ic分別為變壓器二次負荷相電流,R為變壓器的相電阻。則變壓器的損耗表達式如下:
Qa+Qb+Qc≥33√〔(Ia2 R)(Ib2 R)(Ic2 R)〕
由此可知,變壓器的在負荷不變的情況下,當Ia=Ib=Ic時,即三相負荷達到平衡時,變壓器的損耗最小。
則變壓器損耗:
當變壓器三相平衡運行時,即Ia=Ib=Ic=I時,Qa+Qb+Qc=3I2R;
當變壓器運行在最大不平衡時,即Ia=3I,Ib=Ic=0時,Qa=(3I)2R=9I2R=3(3I2R);
即最大不平衡時的變損是平衡時的3倍。
(2)三相負荷不平衡可能造成燒毀變壓器的嚴重后果:
上述不平衡時重負荷相電流過大(增為3倍),超載過多,可能造成繞組和變壓器油的過熱。繞組過熱,絕緣老化加快;變壓器油過熱,引起油質劣化,迅速降低變壓器的絕緣性能,減少變壓器壽命(溫度每升高8℃,使用年限將減少一半),甚至燒毀繞組。
(3)三相負荷不平衡運行會造成變壓器零序電流過大,局部金屬件溫升增高:
在三相負荷不平衡運行下的變壓器,必然會產生零序電流,而變壓器內部零序電流的存在,會在鐵芯中產生零序磁通,這些零序磁通就會在變壓器的油箱壁或其他金屬構件中構成回路。但配電變壓器設計時不考慮這些金屬構件為導磁部件,則由此引起的磁滯和渦流損耗使這些部件發熱,致使變壓器局部金屬件溫度異常升高,嚴重時將導致變壓器運行事故。
3.2 對高壓線路的影響
(1)增加高壓線路損耗:
低壓側三相負荷平衡時,6~10k V高壓側也平衡,設高壓線路每相的電流為I,其功率損耗為: ΔP1 = 3I2R
低壓電網三相負荷不平衡將反映到高壓側,在最大不平衡時,高壓對應相為1.5I,另外兩相都為0.75 I,功率損耗為:
ΔP2 = 2(0.75I)2R+(1.5I)2R = 3.375I2R =1.125(3I2R);
即高壓線路上電能損耗增加12.5%。
(2)增加高壓線路跳閘次數、降低開關設備使用壽命:
我們知道高壓線路過流故障占相當比例,其原因是電流過大。低壓電網三相負荷不平衡可能引起高壓某相電流過大,從而引起高壓線路過流跳閘停電,引發大面積停電事故,同時變電站的開關設備頻繁跳閘將降低使用壽命。
3.3 對配電屏和低壓線路的影響
(1)三相負荷不平衡將增加線路損耗:
三相四線制供電線路,把負荷平均分配到三相上,設每相的電流為I,中性線電流為零,其功率損耗為: ΔP1 = 3I2R
在最大不平衡時,即某相為3I,另外兩相為零,中性線電流也為3I,功率損耗為:
ΔP2 = 2(3I)2R = 18I2R = 6(3I2R);
即最大不平衡時的電能損耗是平衡時的6倍,換句話說,若最大不平衡時每月損失1200 kWh,則平衡時只損失200 kWh,由此可知調整三相負荷的降損潛力。
(2)三相負荷不平衡可能造成燒斷線路、燒毀開關設備的嚴重后果:
上述不平衡時重負荷相電流過大(增為3倍),超載過多。由于發熱量Q=0.24I2Rt,電流增為3倍,則發熱量增為9倍,可能造成該相導線溫度直線上升,以致燒斷。且由于中性線導線截面一般應是相線截面的50%,但在選擇時,有的往往偏小,加上接頭質量不好,使導線電阻增大。中性線燒斷的幾率更高。
同理在配電屏上,造成開關重負荷相燒壞、接觸器重負荷相燒壞,因而整機損壞等嚴重后果。
3.4 對供電企業的影響
供電企業直管到戶,低壓電網損耗大,將降低供電企業的經濟效益,甚至造成供電企業虧損經營。農電工承包臺區線損,線損高農電工獎金被扣發,甚至連工資也得不到,必然影響農電工情緒,輕則工作消極,重則為了得到錢違法犯罪。
變壓器燒毀、線路燒斷、開關設備燒壞,一方面增大供電企業的供電成本,另一方面停電檢修、購貨更換造成長時間停電,少供電量,既降低供電企業的經濟效益,又影響供電企業的聲譽。
3.5 對用戶的影響
三相負荷不平衡,一相或兩相畸重,必將增大線路中的電壓降,降低電能質量,影響用戶的電器使用。
變壓器燒毀、線路燒斷、開關設備燒壞,影響用戶供電,輕則帶來不便,重則造成較大的經濟損失,如停電造成養殖的動植物死亡,或不能按合同供貨被懲罰等。中性線燒斷還可能造成用戶大量低壓電器被燒毀的事故。
評論
查看更多