一種無線遙控音頻功放實現方案_本文將該方法與數字預失真(DPD)和回退等用于改善功放線性度的傳統方法進行了比較。
2011-11-14 10:50:367238 線性化鉑RTD橋,A3橋反饋線性化電路
2020-04-21 10:02:39
數字預失真如何改善數字信號發生器的失真性能?為什么要改進信號源失真?如何利用陷波濾波器消除基頻,從而提高信號分析儀的線性度
2021-05-06 06:05:45
射頻功率放大器作為無線通信系統中最主要的非線性器件,我們該如何去設計射頻功率放大器線性化系統?
2021-04-07 07:00:59
數字線性化白金RTD信號調節器。電路使用數字校正來獲得類似的結果
2019-08-02 08:44:23
認為是功率放大器線性化的方向。而隨著現代通信的發展,效率也開始越來越被關注。Doherty方法被認為是提高效率最有前景的一種結構。前饋與Doherty結構相結合的結構或者數字預失真與Doherty結合的結構具有很大的價值。
2019-07-09 07:10:20
產生多個PCB。然而,一類新型基于系統級封裝(SiP)的集成式接收器極大簡化了這一任務。例如凌力爾特的LTM9003數字預失真uModule接收器,該產品是一款全集成化DPD接收器,實質上是“射頻到比特流”架構。
2019-08-13 06:56:05
NTC熱敏電阻的線性化及其應用
2012-08-14 21:59:56
技術越來越受到關注。目前常用的三種技術分別是:前饋技術(Feedforward)、反饋技術(Feedback)和預失真技術(Pre-Distortion)。在這些線性化技術中,前饋法可以得到很高的線性度
2019-07-15 08:16:56
難以滿足日益提高的效率要求。因而使得很多線性化技術被不斷應用到功放設計中。目前已商用的線性化技術包括前饋、DPD和模擬預失真。其中前饋技術主要的缺點是,誤差環路不能同時放大有用信號,導致效率非常低;而
2019-06-20 08:09:30
更多。數以千計的測試項目已不稀奇。波峰因子消減(CFR)、數字預失真(DPD)及包絡跟蹤(ET)等新技術的運用,有助于將PA效能及功率效率優化,但這些技術只會使得測試更加復雜,而且大幅延長設計及測試
2019-06-11 09:56:19
一種新的記憶多項式預失真器摘要:提出了一種新的記憶多項式預失真器,對寬帶功率放大器進行線性化.該方法主要利用非均勻時延來設計預失真器.軟件仿真結果表明:當輸入為寬帶信號時,與傳統的無記憶預失真技術
2009-08-08 09:52:45
功率放大器數字預失真
2021-03-01 07:12:36
This Article describes the process for developing and implementing an effective power amplifier linearization scheme using baseband adaptive digital pre-distortion.
2019-09-04 15:50:22
嗨,我目前正在使用ADS 2015,根據文檔,默認情況下應該提供線性化設計指南。我可以在安裝文件夾中看到線性化包,但它在ADS原理圖或設計指南列表中不可見。我試圖將其添加為單獨的設計指南,但仍然沒有
2018-09-20 11:24:54
功放預失真模塊化測試解決方案
2013-05-16 16:16:21
技術FF(Feed Forword)和數字預失真DPD(Digital Pre-Distortion )技術。FF技術雖然具有矯正精度高和線性度好的優點,但也存在著成本高、生產工藝復雜和效率低的缺點
2019-04-10 07:00:04
線性化的方法(圖5與參考文獻5)。此時,要用一個單向耦合器對RF輸出做采樣。可以用一個混頻器,將千兆赫水平的信號下變頻到一個較低頻率。然后就可以用一個快速ADC對波形采樣。這些采樣被送至一片運行預失真
2011-08-02 11:25:06
,介紹一種創新性DPD線性化電路特有的自適應算法。在無線系統中,功放(PA)線性度和效率常是必須權衡的兩個參數。幸運的是,基于Volterra的自適應數字預失真(DPD)線性化電路可以使無線系統中的射頻
2019-06-25 06:19:09
【作者】:張惠珍;馬良;【來源】:《系統工程理論與實踐》2010年03期【摘要】:文章在對已有二次分配問題(QAP)線性化模型深入研究的基礎上,提出一種二次分配問題線性化新方法,進而給出了對稱二次
2010-04-24 09:49:00
的非線性特性進行線性化糾正,使HPA和線性化電路在整體上呈現對輸入信號的線性放大效果[11]。目前,常用到的HPA線性化方法有功率回退法、負反饋法、前饋法和預失真法[7]。無論何種方法,其目的都是為了在
2018-07-30 18:09:06
數字預失真平臺系統模型是怎樣構成的?如何對數字預失真平臺系統進行仿真測試?
2021-04-21 07:23:32
如何提高預失真放大器LMS算法的收斂速度?數字預失真放大器的基本結構有哪些?查找表的自適應算法是什么?
2021-04-09 06:30:17
了解如何用GAMS編寫增量線性化程序
2021-07-12 06:36:42
【摘要】Doherty功率放大器雖然效率較高,但是其線性度通常較差,需要采用數字預失真技術對其線性化。為了滿足越來越高的通信速率,Doherty功放的工作帶寬也越來越寬。因此,為了評估Doherty
2019-07-18 07:47:23
比較,進而產生適當的校正。目前己經提出并得到廣泛應用的功率放大器線性化技術包括,功率回退,負反饋,前饋,預失真,包絡消除與恢復(EER),利用非線性元件進行線性放大(LINC) 。較復雜的線性化技術
2018-11-20 14:05:37
)較大,這要求放大器必須具有良好的線性特性,否則非線性影響,如互調失真,會導致頻譜再生,進而產生鄰道干擾。在設計放大器,如WCDMA多載波功率放大器時,要采用線性化技術來補償放大器的非線性,從而提高放大器輸出信號的頻譜純度,減少鄰道干擾。與此同時,我們還必須兼顧到放大器的工作效率。
2019-07-23 06:27:28
我有一些問題要問: 1。你能否告訴我,我們是否可以利用董事會做一些關于數字預失真的工作?2。我怎樣才能獲得xilinx DPD(數字預失真)參考設計的副本并聯系意大利代表提出一些問題?
2019-08-16 10:44:14
基于線性化潮流的配電網靈敏度計算方法包括哪些步驟?基于線性化潮流的配電網靈敏度計算表達式是什么?
2021-07-11 06:27:49
本文首先簡述了普通的預失真線性化技術,而后在此基礎上進行改進,添加了自適應算法,并通過信號包絡檢測技術提取出帶外信號進行調節,從而達到改善輸出信號線性度的目的。同時由于采用了自適應控制電路,當功率變化,溫度變化,以及器件老化等情況下,系統的性能可仍然保持良好。
2021-04-22 06:01:49
%的 DC 功率。現今大部分的 RF PA 皆支持多種模式、頻率范圍及調制模式,使得測試項目變得更多。數以千計的測試項目已不稀奇。波峰因子消減(CFR)、數字預失真(DPD)及包絡跟蹤(ET)等新技術的運用
2019-12-27 07:00:00
不高于10%。PA的線性化技術就是在改善PA線性化的同時提高其效率的技術,PA線性化設計一直是3G基站設計的關鍵問題之一。數字基帶預失真技術由于在工作頻率較低的中頻實現,應用了數字處理技術,適應性強,并且
2018-11-26 16:07:53
本文結合基于一維查找表的復增益數字預失真ASIC芯片ISL5239,介紹了WCDMA、CDMA2000和TD-SCDMA多載波基站PA的線性化設計。
2021-05-28 06:20:33
本文介紹的用諧波發生器實現預失真的線性化技術,由于靠調節兩個二極管的偏置電壓,使其分別產生IM3和IM5,因此很容易作為自適應的控制端,運用自適應算法進行更準確的調節,使得IM3和IM5有更好的改善。
2021-04-14 06:53:26
1 引 言常用的線性化技術有反饋法、預失真法、前饋法、笛卡爾環、非線性部件實現線性化(LINC)等。預失真法是最常用的,其工作函數預失真器有2個顯著的特點:線性修正是在功率放大器之前,其插入損耗
2019-07-05 06:09:28
1 引 言常用的線性化技術有反饋法、預失真法、前饋法、笛卡爾環、非線性部件實現線性化(LINC)等。預失真法是最常用的,其工作函數預失真器有2個顯著的特點:線性修正是在功率放大器之前,其插入損耗
2019-06-21 06:17:57
常用的線性化技術有哪些?自適應前饋線性化技術的工作原理是什么,其實現方法是什么?
2021-04-08 06:48:03
本文提出一種基于硬件的數字預失真校正系統的設計方法。
2021-05-26 06:32:46
線性化電橋測溫電路
2019-10-25 04:04:10
)問題,就必須對功放采用線性化技術。不僅如此,功放在基站放大器中的成本比例約占50%,那么,我們該如何有效、低成本地解決功放地線性化問題呢?
2019-08-16 08:21:23
Qorvo 的 QPA9903 是一款可線性化的功率放大器,工作頻率范圍為 1805 至 1880 MHz,針對頻段 3 小型蜂窩無線基礎設施系統。PA 提供 28 dBm 的輸出功率,整個頻帶
2022-10-10 09:27:09
對基于微分幾何的輸入/輸出反饋線性化處理方法作了研究,并將其應用于飛機的非線性控制方程中,同時對飛機自動著陸的縱向飛行軌跡設計了跟蹤控制方案。關鍵詞:非線性
2009-06-20 09:24:1421 介紹了兩種對傳感器輸出信號進行線性化處理的方法; 同時, 對傳感器不可避免的非線性提出了線性補償的方法。關鍵詞: 傳感器, 非線性, 線性化【Abstract】 Two linear treatments on
2009-07-11 10:48:3254 分段線性化模型
分段線性化法是將特性曲線分為若干段,每段用直線近似,這樣每段中的伏安特性用直線方程表示或用等值線性電路表示,
2009-07-27 12:14:353967 可以任意設定線性特性的數字式線性化電路
電路的功能
2010-05-07 11:33:00725 1 引 言常用的線性化技術有反饋法、預失真法、前饋法、笛卡爾環、非線性部件實現線性化(LINC)等。預失
2010-09-28 16:51:072337 為了兼顧線性和效率,3G通信系統的功放設計一般都采用了各種線性化技術來得到線性和效率平衡。前饋和數字預失真是線性功放設計中經常采用的兩種方案,與前饋和數字預失真方案
2011-06-23 16:37:3840 介紹新的帶外信號檢測方法和自適應模擬 預失真 線性化技術,并應用于CDMA直放站的5W自適應射頻線性功率放大器。為了有效抑制臨信道頻譜再生,通過自適應檢測和自適應預失真控制使輸
2011-08-25 15:02:1439 在無線通信系統全面進入3G并開始邁向 4G的過程中,使用數字預失真技術(Digital Pre-distortion,以下簡稱DPD)對發射機的功放進行線性化是一門關鍵技術。功率放大器是通信系統中影響系
2012-02-14 17:08:2463 一類線性時變系統線性化穩定性分析方法的討論
2016-01-07 16:26:180 中頻逆變器數字控制延時的線性化近似_劉春喜
2017-01-08 10:24:071 現在,功率附加效率(PAE)或LTE相鄰信道泄漏比(ACLR)等關鍵功率放大器(PA)指標必須在DPD或DPS條件下測量。本文旨在介紹其中幾種高級PA測試技術(包括DPD和DPS)的測試方法。
2017-10-16 17:22:00386 常用的線性化技術有反饋法、預失真法、前饋法、笛卡爾環、非線性部件實現線性化(LINC)等。預失真法是最常用的,其工作函數預失真器有2個顯著的特點:線性修正是在功率放大器之前,其插入損耗小;修正算法
2017-11-24 18:24:01661 在無線系統中,功放(PA)線性度和效率常是必須權衡的兩個參數。工程師都在尋找一種有效而靈活的基于Volterra的自適應預失真技術,可用于實現寬帶RF功放的高線性度。本文將概述不同數字預失真技術,介紹一種創新性DPD線性化電路特有的自適應算法。
2017-11-25 14:02:582194 ,介紹一種創新性DPD線性化電路特有的自適應算法。 在無線系統中,功放(PA)線性度和效率常是必須權衡的兩個參數。幸運的是,基于Volterra的自適應數字預失真(DPD)線性化電路可以使無線系統中的射頻PA達到高線性度高效率。
2017-12-11 19:07:26993 距離用戶較近,其模型線性化時產生的誤差不能被忽略,否則會導致定位解算可能無法正確收斂。針對此問題,本文精確地給出了線性化誤差的邊界值,并提出了判別線性化誤差對定位精度影響的簡化方法,根據此方法分析了不同偽衛星的星座
2018-02-27 16:49:411 Doherty功率放大器的線性度較差,通常需要搭配數字預失真技術(DPD)才能在基站中使用。因此, 寬帶Doherty功放除了效率、帶寬指標需要關注外,能否線性化也是目前業內比較關注的話題。Doherty功放設計完成后,需要測試其DPD后的線性度性能,以完成對所設計的功放的整體性能評估。
2018-03-20 09:15:022307 AD9375是首款片內集成數字預失真(DPD)的寬帶收發器。DPD用于使功率放大器(PA)的輸出線性化。AD9375 DPD解決方案針對小型蜂窩和大規模MIMO應用。
2018-05-22 13:45:014582 在無線系統中,功放(PA)線性度和效率常是必須權衡的兩個參數。幸運的是,基于Volterra的自適應數字預失真(DPD)線性化電路可以使無線系統中的射頻PA達到高線性度高效率。這種自適應數字預失真
2018-12-17 09:46:002449 AD9375是首款片內集成數字預失真(DPD)的寬帶收發器。DPD用于使功率放大器(PA)的輸出線性化。AD9375 DPD解決方案針對小型蜂窩和大規模MIMO應用。
2019-07-30 06:11:002023 ?射頻功率放大器的非線性失真會使其產生新的頻率分量,如對于二階失真會產生二次諧波和雙音拍頻,對于三階失真會產生三次諧波和多音拍頻。這些新的頻率分量如落在通帶內,將會對發射的信號造成直接干擾,如果落在
2019-07-04 17:04:282834 為了進一步評估寬帶Doherty功放在載波聚合場景下的工作狀態,需要測試采用并發雙頻數字預失真技術 (2D-DPD) 后的功放線性化性能。此時,功放的激勵信號是兩個10 MHz的LTE信號,采用2D-CFR技術進行削峰處理,載波頻率分別是1.8 GHz和2 GHz。
2019-10-14 15:20:303922 Simulink Control Design工具箱的一大特點就是它提供了Block-by-Block的線性化方法。這個方法有時也叫Exact Linearization(不同于基于微分幾何的全局
2019-09-17 14:16:285750 常用的線性化技術有反饋法、預失真法、前饋法、笛卡爾環、非線性部件實現線性化(LINC)等。預失真法是最常用的,其工作函數預失真器有2個顯著的特點:線性修正是在功率放大器之前,其插入損耗小;修正算法帶寬限制小。數字預失真技術復雜度高能提供較好的IMD壓縮,但由于DSP運算速度使其帶寬小。
2020-08-07 18:52:000 瞄準高效放大器時,克服RF信號的非線性特性非常具有挑戰性。在本應用筆記中,提出了線性化技術和RF預失真器調諧,以使用最少的組件來實現最大的PA效率。該應用中使用MAX2009 / MAX2010模擬
2021-05-21 11:31:066174 數字預失真 (DPD) 微型模塊接收器簡化基站設計
2021-03-18 19:55:024 針對 PA 線性化的 12 位 185Msps 模數轉換器
2021-03-21 12:53:202 電子發燒友網為你提供詳解功率放大器 (PA) 數字預失真 (DPD)資料下載的電子資料下載,更有其他相關的電路圖、源代碼、課件教程、中文資料、英文資料、參考設計、用戶指南、解決方案等資料,希望可以幫助到廣大的電子工程師們。
2021-04-06 08:46:4018 UG-1238:帶數字預失真的ADRV-DPD1/PCBZ小蜂窩無線基準設計
2021-04-29 14:33:504 UG-1238ADRV-DPD1PCBZ數字預失真小蜂窩無線基準設計
2021-05-29 11:38:181 數字預失真(通常稱為DPD)是一種廣泛用于無線通信系統的算法。DPD的目的是抑制通過射頻功率放大器(PA)的寬帶信號的頻譜再生,1從而提高PA的整體效率。通常,PA在處理高功率輸入信號時具有非線性
2022-12-14 11:36:201443 本文提供功率放大器設計指南,以利用Maxim射頻(RF)功率放大器(PA)線性化器(RFPAL)或其他類型的預失真實現最佳性能。
2023-01-05 14:57:291775 必須考慮記憶效應。在功放線性化PA中,數字預失真利
用了發射機中已有的數字信號處理(DSP)器件(以應對現代標準中要求的信號編碼保護和調制),從而減少了硬件調整問題。DPD是一種通
用的線性化技術,它利用了軟件定義的無線電(SDR)解決
2023-02-20 10:03:110 本文介紹ADI ADRV9002的數字預失真(DPD)功能。所用的一些調試技術也可應用于一般DPD系統。首先,概述關于DPD的背景信息,以及用戶試驗其系統時可能會遇到的一些典型問題。最后,文章介紹在DPD軟件工具幫助下可應用于DPD算法以分析性能的調優策略。
2023-07-12 16:06:141117 放大器線性化的方法及差異是什么? 隨著通信和電子技術的不斷發展,放大器在電子電路中的作用越來越重要。然而,由于放大器自身存在的非線性因素,它們的輸出信號可能包含不必要的諧波和失真,從而影響到整個
2023-09-18 15:08:33530 當以高效放大器為目標時,克服射頻信號的非線性行為非常具有挑戰性。在本應用筆記中,介紹了線性化技術和射頻預失真器調諧,以使用少的組件實現的 PA 效率。該應用中使用MAX2009/MAX2010模擬RF預失真器來消除非線性,而不犧牲PA的效率和性能。
2023-10-04 17:28:00147 功率放大器是現代通信中一個重要的元件。現代通信系統趨向于使用線性調制方式,這就要求射頻系統具有很好的線性特性。因此,對功放的輸出進行線性化成為現代通信中一個重要的課題。在現代無線通信系統之中,射頻
2023-10-26 08:29:05273 電子發燒友網站提供《功率放大器 (PA) 數字預失真 (DPD)的技術演進.pdf》資料免費下載
2023-11-27 09:54:200 5G、WLAN、低軌衛星通信等系統中,為了支持更高的傳輸速率,采用了更寬的調制帶寬、更高階的調制方式,這都對發射機的線性化提出了挑戰。數字預失真(DPD)作為一種有效的線性化技術,可以顯著改善
2023-12-20 09:55:02130
評論
查看更多