作者:Victor Khasiev
ADI?
臺式電源(PS)往往有偶數(shù)個端口(忽略機(jī)箱端口):一個正端口和一個負(fù)端口。使用臺式電源產(chǎn)生正極性輸出很容易:將負(fù)輸出設(shè)置為GND,將正輸出電壓設(shè)置為正輸出。產(chǎn)生負(fù)電源同樣容易,只需將上述設(shè)置反轉(zhuǎn)。但是,如何生產(chǎn)雙極性電源,負(fù)載可以同時使用正電壓和負(fù)電壓?相對而言,這也很簡單—只需將一個實(shí)驗(yàn)室通道的正端口連接到另一個通道的負(fù)端口,并稱其為GND。另外兩個端口(正和負(fù))分別就是正負(fù)電源。結(jié)果得到一個三端口雙極性電源,提供GND、正和負(fù)電壓電平。由于使用了三個端口,因此在電源下游的正電源和負(fù)電源之間必須進(jìn)行某種切換。
如果應(yīng)用要求同一電源端口為正或負(fù)(僅向負(fù)載提供兩個端口的設(shè)置),該怎么辦?這不是一個純學(xué)術(shù)問題。在汽車和工業(yè)環(huán)境中,有些應(yīng)用需要雙極性、可調(diào)節(jié)的雙端口電源。例如,從具異國風(fēng)情的玻璃貼膜到測試測量設(shè)備,這些應(yīng)用會使用雙端口雙極性電源。
如前所述,傳統(tǒng)雙極性電源使用三個輸出端口產(chǎn)生兩路輸出:正、負(fù)和GND。相比之下,單路輸出電源應(yīng)僅配備兩個輸出端口:一個 GND和另一個可以為正也可以為負(fù)的輸出端口。在此類應(yīng)用中,輸出電壓可以通過單個控制信號在從最小負(fù)值到最大正值的全部范圍內(nèi)相對于GND調(diào)節(jié)。
有些控制器專門用于實(shí)現(xiàn)雙極性電源功能,例如雙極性輸出同步 控制器?LT8714。然而,對于許多汽車和工業(yè)制造商而言,對專用IC 進(jìn)行測試和認(rèn)證需要一些時間和金錢上的投入。相比之下,許多制造商已經(jīng)擁有預(yù)認(rèn)證的降壓轉(zhuǎn)換器和控制器,因?yàn)闊o數(shù)汽車和工業(yè)應(yīng)用中都會用到這些器件。本文介紹在不能選擇專用雙極性電源IC時如何利用降壓轉(zhuǎn)換器產(chǎn)生雙極性電源。
電路描述及功能
圖1顯示了基于降壓轉(zhuǎn)換器的雙極性(二象限)可調(diào)電源解決方案。輸入電壓范圍為12 V至15 V;輸出為±10 V范圍內(nèi)的任何電壓, 由控制塊調(diào)節(jié),支持高達(dá)6 A的負(fù)載。雙路輸出降壓控制器IC是此設(shè)計的核心器件。每個降壓–升壓拓?fù)溥B接的一路輸出產(chǎn)生穩(wěn)定的-12 V電壓(即圖1中的-12 V負(fù)軌,其功率鏈路包括L2、Q2、Q3和 輸出濾波器CO2)。
圖1. 兩端子、雙極性、可調(diào)節(jié)電源的電氣原理圖
-12 V電壓軌用作第二通道的接地,控制器的接地引腳也連接到-12 V 電壓軌。總的來說,這是一個降壓轉(zhuǎn)換器,其輸入電壓為-12 V和 VIN之間的差值。輸出可調(diào),相對于GND可正可負(fù)。請注意,相對于-12 V電壓軌,輸出始終為正,其功率鏈路包括L1、Q1、Q4和 CO1。 反饋電阻分壓器 RB–RA?設(shè)置最大輸出電壓。該分壓器的值由輸出電壓控制電路調(diào)節(jié),此電路可通過向 RA注入電流來將輸出調(diào)節(jié)至最小輸出電壓(負(fù)輸出)。應(yīng)用啟動特性由RUN和TRACK/SS引腳的端接電阻設(shè)置。
兩路輸出均在強(qiáng)制連續(xù)導(dǎo)通模式下工作。在輸出控制電路中,0μA 至200μA電流源 ICTRL在實(shí)驗(yàn)室測試時連接到負(fù)軌,但也可以GND為 基準(zhǔn)。低通濾波器 RF1–CF?可降低快速輸出瞬變。為了縮減轉(zhuǎn)換器的成本和尺寸,使用相對便宜的極化電容形成輸出濾波器。可選 二極管D1和D2用于防止這些電容上產(chǎn)生反向電壓,尤其是在啟動時。如果僅使用陶瓷電容,則不需要二極管。
轉(zhuǎn)換器測試和評估
本解決方案基于?LTC3892?和評估套件?DC1998A?與?DC2493A進(jìn)行過測試和評估。該轉(zhuǎn)換器在眾多測試中表現(xiàn)良好,包括電壓和負(fù)載調(diào)整、瞬態(tài)響應(yīng)以及輸出短路。圖2顯示了啟動至6 A負(fù)載、輸出為+10 V的情況。控制電流和輸出電壓之間的函數(shù)線性度如圖3所示。隨著控制電流從0μA增加到200μA,輸出電壓從+10 V降至-10 V。圖4顯示了效率曲線。
圖2. 進(jìn)入電阻負(fù)載的啟動波形
圖3. VOUT?與控制電流 ICTRLL的關(guān)系。當(dāng) ICTRL?從0 A增加到200μA時,輸出電壓從+10 V降至-10 V。
圖4. 正負(fù)輸出的效率曲線
我們開發(fā)了該雙極性、雙端子電源的?LTspice??模型,以簡化該方法的采用,允許設(shè)計人員分析和仿真上述電路,引入變化,查看波形,以及研究器件應(yīng)力。
描述此拓?fù)涞幕竟胶捅磉_(dá)式
這種方法基于設(shè)計的降壓–升壓部分產(chǎn)生的負(fù)電壓軌 VNEG。
其中, VOUT?為最大輸出電壓的絕對值, Km?為0.1到0.3的系數(shù)。 Km?限制 降壓轉(zhuǎn)換器的最小占空比。 VNEG?還設(shè)置 VIN的最小值:
其中 VBUCK?為降壓部分的輸入電壓,因而表示轉(zhuǎn)換器半導(dǎo)體器件上的最大電壓應(yīng)力:
VBUCK(MAX)?和?VBUCK(MIN)?分別為該拓?fù)涞慕祲翰糠值淖畲蠛妥钚‰妷骸=祲翰糠值淖畲蠛妥钚≌伎毡纫约半姼须娏骺捎靡韵卤磉_(dá)式描述,其中 IOUT為輸出電流:
電源降壓–升壓部分的占空比:
降壓部分的輸入功率以及相應(yīng)的降壓–升壓輸出功率:
轉(zhuǎn)換器功率和輸入電流:
輸出電壓變化是通過將電流注入降壓部分的反饋電阻分壓器來實(shí)現(xiàn)的。圖1的輸出電壓控制電路部分顯示了如何設(shè)置輸出電壓控制。
如果給定 RB?,那么
其中 VFB?為反饋引腳電壓。
當(dāng)電流源 ICTRL?L將零電流注入 RA時, 降壓轉(zhuǎn)換器的輸出電壓是相對于負(fù)軌的最大正值 (VBUCK(MAX)) 和相對于GND的最大輸出電壓 (+ VOUT)。 為了給負(fù)載產(chǎn)生負(fù)輸出電壓(相對于GND),須將?I注入降壓分壓器的電阻RA,使輸出電壓降至相對于負(fù)輸出電壓(–VOUT)的最小值 VBUCK(MIN)。
數(shù)值示例
通過使用前面的公式,我們可以計算雙極性電源的電壓應(yīng)力、流過功率鏈路器件的電流以及控制電路的參數(shù)。例如,以下計算是針對一個從14 V輸入電壓產(chǎn)生6 A、±10 V輸出的電源。
如果 Km?為0.2,則 VNEG?= –12 V。驗(yàn)證最小輸入電壓 VIN?≥ | VNEG?|的條件。 半導(dǎo)體器件 VBUCK上的電壓應(yīng)力為26 V。
降壓部分的最大電壓為 VBUCK(MAX)?= 22 V,相對于負(fù)電壓軌;輸出電 壓設(shè)置為+10 V,相對于GND。最小電壓 VBUCK(MIN)?= 2 V,對應(yīng)于-10 V (相對于GND)的輸出電壓。這些最大和最小電壓對應(yīng)于最大和 最小占空比, DBUCK(MAX)?= 0.846, DBUCK(MIN)?= 0.077, and DBB?= 0.462。
功率可通過假設(shè)效率為90%來計算,產(chǎn)生 POUT(BB)?= 66.67 W, IOUT(BB)?= 5.56 A, IL(BB)?= 10.37 A, PBB?= 74.074 W。
對于+10 V的輸出電壓(根據(jù)圖1),控制電路電流?I為0μ A,而對于-10 V的輸出電壓,?I = 200μA。
結(jié)論?
本文介紹了一種雙極性、雙端子電源設(shè)計。這里討論的方法基于降壓轉(zhuǎn)換器拓?fù)浣Y(jié)構(gòu),它是現(xiàn)代電源電子的主力技術(shù),因此能以各種形式提供,從帶外部器件的簡單控制器到完整模塊應(yīng)有盡有。采用降壓拓?fù)浣Y(jié)構(gòu)可以賦予設(shè)計人員靈活性,并且可以選擇使用預(yù)認(rèn)證器件,從而節(jié)省時間和成本。
作者
Victor Khasiev 是 ADI 高級應(yīng)用工程師。Victor 在 AC/DC 和 DC/DC 轉(zhuǎn)換的電力電子領(lǐng)域擁有豐富的經(jīng)驗(yàn)。 他擁有兩項(xiàng)專利,撰寫了多篇文章。這些文章與在汽車和工業(yè)應(yīng)用中使用的 ADI 半導(dǎo)體有關(guān)。涵蓋了升壓、降壓、SEPIC、正-負(fù)、負(fù)-負(fù)、反激式、正激式轉(zhuǎn)換器和雙向備用電源。他的專利涉及高效功率因數(shù)校正解決方案和先進(jìn)柵極驅(qū)動器。Victor 樂于為 ADI 客戶提供支持:解答有關(guān) ADI 產(chǎn)品、電源原理圖設(shè)計和驗(yàn)證、印刷電路板布局、故障排查等問題并參與測試最終系統(tǒng)。
評論
查看更多