測量學
測量學的產(chǎn)生
生產(chǎn)、生活的需要以及建筑、農(nóng)田、水利建設等
?????? 公元前二十七世紀建設的埃及大金字塔,其形狀與方向都很準確,說明當時已有放樣的工具和方法。
????? 我國二千多年前的夏商時代,為了治水開始了水利工程測量工作。司馬遷在《史記》中對夏禹治水有這樣的描述:“陸行乘車,水行乘船,泥行乘撬,山行乘攆(jú),左準繩,右規(guī)矩、載四時,以開九州,通九道,陂九澤,度九山。”所記錄的是當時的工程勘測情景,準繩和規(guī)矩就是當時所用的測量工具,準是可揆(kiu)平的水準器,繩是丈量距離的工具,規(guī)是畫圓的器具,矩則是一種可定平、測長度、高度、深度和畫圓畫矩形的通用測量儀器。早期的水利工程多為河道的疏導,以利防洪和灌溉,其主要的測量工作是確定水位和堤壩的高度。秦代李冰父子領(lǐng)導修建的都江堰水利樞紐工程,曾用一個石頭人來標定水位,當水位超過石頭人的肩時,下游將受到洪水的威脅;當水位低于石頭人的腳背時,下游將出現(xiàn)干旱。這種標定水位的辦法與現(xiàn)代水位測量的原理完全一樣。北宋時沈括為了治理汴渠,測得“京師之地比泗州凡高十九丈四尺八寸六分”,是水準測量的結(jié)果。1973年從長沙馬王堆漢墓出土的地圖包括了地形圖、駐軍圖和城邑圖三種,不僅所表示的內(nèi)容相當豐富,繪制技術(shù)也非常熟練,在顏色使用、符號設計、內(nèi)容分類和簡化等方面都達到了很高水平,是目前世界上發(fā)現(xiàn)的最早的地圖,這與當時測繪術(shù)的發(fā)達分不開。
公元前十四世紀,在幼發(fā)拉底河與尼羅河流域曾進行過土地邊界的劃分測量。我國的地籍管理和土地測量最早出現(xiàn)在殷周時期,秦、漢過渡到私田制。隋唐實行均田制,建立戶籍冊。宋朝按鄉(xiāng)登記和清丈土地,出現(xiàn)地塊圖。到了明朝洪武四年,全國進行土地大清查和勘丈,編制的魚鱗圖冊,是世界最早的地籍圖冊。
軍事、交通運輸?shù)男枰?---旅行、航海等
?工程測量學的發(fā)展也受到了戰(zhàn)爭的促進。中國戰(zhàn)國時期修筑的午道,公元前210年秦始皇修建的“塹山堙谷,千八百里”直道,古羅馬構(gòu)筑的兵道,以及公元前218年歐洲修建的通向意大利的“漢尼撥通道”等,都是著名的軍用道路。修建中應用了測量工具進行地形勘測、定線測量和隧道定向開挖測量。
唐代李筌指出“以水佐攻者強,……,先設水平測其高下,可以漂城,灌軍,浸營,敗將也”,說明了測量地勢高低對軍事成敗的作用。中華民族偉大象征的萬里長城修建于秦漢時期,這一規(guī)模巨大的防御工程,從整體布局到修筑,都進行了詳細的勘察測量和施工放樣工作。
?我國的采礦業(yè)是世界上發(fā)展最早的國家,在公元前二千多年的黃帝時代就已開始應用金屬如銅器、鐵器等,到了周代金屬工具已普遍應用。據(jù)《周禮》記載,在周朝已建立了專門的采礦部門,開采時很重視礦體形狀,并使用礦產(chǎn)地質(zhì)圖來辨別礦產(chǎn)的分布。
我國四大發(fā)明之一的指南針,從司南、指南魚算起,有二千多年的歷史,對礦山測量和其它工程勘測有很大的貢獻。在國外,意大利都靈保存有公元前十五世紀的金礦巷道圖。公元前十三世紀埃及也有按比例縮小的巷道圖。公元前一世紀,希臘學者格羅·亞里山德里斯基對地下測量和定向進行了敘述。德國在礦山測量方面有很大貢獻,1556年格·阿格里柯拉出版的《采礦與冶金》一書,專門論述了開采中用羅盤測量井下巷道的一些問題。
測量學(Surveying)的定義
定義:
??? 測量學是研究對地球整體及其表面和外層空間中的各種自然和人造物體上與地理空間分布有關(guān)的信息進行采集處理、管理、更新和利用的科學和技術(shù)。
它的主要任務有三個方面:
? 一是研究確定地球的形狀和大小,為地球科學提供必要的數(shù)據(jù)和資料;
? 二是將地球表面的地物地貌測繪成圖;
? 三是將圖紙上的設計成果測設至現(xiàn)場。
大地測量學(Geodesy )
?? 是研究和確定地球形狀、大小、重力場、整體與局部運動和地表面點的幾何位置以及它們的變化的理論和技術(shù)的學科。其基本任務是建立國家大地控制網(wǎng),測定地球的形狀、大小和重力場,為地形測圖和各種工程測量提供基礎(chǔ)起算數(shù)據(jù);為空間科學、軍事科學及研究地殼變形、地震預報等提供重要資料。按照測量手段的不同,大地測量學又分為常規(guī)大地測量學、衛(wèi)星大地測量學及物理大地測量學等。
地圖制圖學(Cartography)
??? 是研究模擬和數(shù)字地圖的基礎(chǔ)理論、設計、編繪、復制的技術(shù)、方法以及應用的學科。它的基本任務是利用各種測量成果編制各類地圖,其內(nèi)容一般包括地圖投影、地圖編制、地圖整飾和地圖制印等分支。
攝影測量與遙感
(Photogrammetry and remote sensing)
是研究利用電磁波傳感器獲取目標物的影像數(shù)據(jù),從中提取語義和非語義信息,并用圖形、圖像和數(shù)字形式表達的學科。其基本任務是通過對攝影像片或遙感圖像進行處理、量測、解譯,以測定物體的形狀、大小和位置進而制作成圖。根據(jù)獲得影像的方式及遙感距離的不同,本學科又分為地面攝影測量學,航空攝影測量學和航天遙感測量等。
工程測量學(Engineering surveying)
?? 定義一:工程測量學是研究各項工程在規(guī)劃設計、施工建設和運營管理階段所進行的各種測量工作的學科。
各項工程包括:工業(yè)建設、鐵路、公路、橋梁、隧道、水利工程、地下工程、管線(輸電線、輸油管)工程、礦山和城市建設等。一般的工程建設分為規(guī)劃設計、施工建設和運營管理三個階段。工程測量學是研究這三階段所進行的各種測量工作。
定義二:工程測量學主要研究在工程、工業(yè)和城市建設以及資源開發(fā)各個階段所進行的地形和有關(guān)信息的采集和處理,施工放樣、設備安裝、變形監(jiān)測分析和預報等的理論、方法和技術(shù),以及研究對測量和工程有關(guān)的信息進行管理和使用的學科,它是測繪學在國民經(jīng)濟和國防建設中的直接應用。
定義三:工程測量學是研究地球空間(包括地面、地下、水下、空中)中具體幾何實體的測量描繪和抽象幾何實體的測設實現(xiàn)的理論、方法和技術(shù)的一門應用性學科。它主要以建筑工程、機器和設備為研究服務對象。
測量儀器學
???? 研究測量儀器的制造、改進和創(chuàng)新的學科。
地形測量學
是研究如何將地球表面局部區(qū)域內(nèi)的地物、地貌及其它有關(guān)信息測繪成地形圖的理論、方法和技術(shù)的學科。按成圖方式的不同地形測圖可分為模擬化測圖和數(shù)字化測圖。
測量學的發(fā)展與作用
這 是人 類 長 期 探 索 的 問 題 。? 早 在 公 元 前 6 世 紀?? 古 希 臘 的 畢 達 哥 拉 斯(Pythagoras) 就 提 出 了 地的球 形 狀的 概 念 。
?
兩 世 紀 后 , 亞 里 士 多 德(Aristotle) 作 了 進 一 步 論 證 , 支 持 這 一 學 說 。
又 一 世 紀 后 , 埃 拉 托 斯 特 尼(Eratosthenes)? 用 在 南 北 兩 地 同 時 觀 測 日 影 的 辦 法 首 次 推 算 出 地 球 子 午 圈 的 周 長? 。
?
其 想 法 很 簡 單 , 先 測 量地面上一段( 子? 午 線) 的 弧 長 l,
?再 測 量 該 弧 長所 對 的 中 心 角 θ 。
?則 地 球 的 半 徑R 就 可求 得 :
????????????? R=l/θ 地 球 子 午 線 的 周 長 可 等 于 ?????? L=2πR 這 里 關(guān) 鍵 在 于 如 何 求 θ 。
為? 此 要 同 時 在 南 北 兩 點? 測 量 豎 桿? 影 子 的 長 度 。
?憑 影 長和 桿 高 就 可 以 求 得? 兩 個桿 子 與 陽 光 的 夾 角 φ1?? 和 φ2。
?設 在 同 一 時 刻 兩 地 的 陽 光 相 互 平 行 則???????? θ=? φ2? - φ1
在人類認識地測球形狀和大小的過程中,測量學獲得了飛速的發(fā)展。
例如:三角測量和天文測量的理論和技術(shù)、高精度經(jīng)緯儀制作的技術(shù)、距離丈量的技術(shù)及有關(guān)理論、測量數(shù)據(jù)處理的理論以及誤差理論等。
在測量學發(fā)展的過程中很多數(shù)學家、物理學家作出了巨大的貢獻,如托勒密、墨卡托等。
測量學在軍事的作用
“天時,地利,人和”是打勝仗的三大要素。
要有地利就要了解和利用地利。
地圖上詳細表示著山脈、河流、道路、居民點等地形和地物,具有確定位置、辨識方向的作用。
? 地圖一直在軍事活動中起著重要的作用,這對于行軍、布防以及了解敵情等軍事活動都是十分重要的。因此,早就成為軍事上不可缺少的工具,獲得廣泛的應用。
?人造衛(wèi)星定位技術(shù)早期用于軍事部門,后逐步解密才在測繪及其它眾多部門中獲得應用、海洋測量技術(shù)首先是由航海的需要而產(chǎn)生,但其高速發(fā)展的動力主要來自軍事部門的需要……等等。至今軍事測繪部門仍在測繪領(lǐng)域科技前沿對重大課題進行探索和研究
?
傳統(tǒng)上各國測繪部門隸屬于軍事部門。至今相當多國家的測繪部門仍然隸屬于軍事部門。隨著測繪技術(shù)在各方面的應用愈來愈廣泛,測繪科技國際間的交流日益頻繁,不少國家終于建立了民用的測繪機構(gòu)
測量學在國土管理中的作用
測量學的起源和土地界線的劃定緊密聯(lián)系著。非洲尼羅河每年泛濫會把土地的界線沖刷掉,為了每年恢復土地的界線很早就采用了測量技術(shù)
?
早期亦稱“土地測量”、“土地清丈”等。用以測定地塊的邊界和坐落,求算地塊的面積,在農(nóng)業(yè)為主的社會里,國家為了征稅而開展地籍測量,同時記錄業(yè)主姓名和土地用途等。
在我國,地籍測量是國家管理土地的基礎(chǔ)。地籍測量的成果不僅用于征稅,還用于管理土地的權(quán)屬以保障用地的秩序,為了提高土地利用的效益、合理和節(jié)約利用十分珍貴和有限的土地。
?
????? 測量學還服務于國家領(lǐng)土的管理。《戰(zhàn)國策·燕策》中關(guān)于荊軻刺秦王,“圖窮而匕首見”的記述,表明在戰(zhàn)國時期地圖在政治上象征著國家的領(lǐng)土和主權(quán)。當代,在一些國家間的領(lǐng)土爭執(zhí)中,也常以對方出版的地圖上對國境線的表示作為有利于己方的證據(jù)或者用測量技術(shù)為手段標定國界
四、 測量學在工程建設中的作用
1.勘測設計階段? 為選線測制帶狀地形圖。
2.施工階段? 把線路和各種建筑物正確地測設到地面上。
3.竣工測量? 對建筑物進行竣工測量。
4.運營階段? 為改建、擴大建而進行的各種測量。
5.變形觀測? 為安全運營,防止災害進行變形測量。
測量學在工程建設中的作用
在修建宮殿、陵墓時須要平整地基,開鑿渠道修建運河須要了解地形的起伏,建造城市時中心線常要定向,開挖地道更需仔細的定向定位定高度……等等。我國的考古工作者研究證實,早在2000多年前已經(jīng)在修建宮殿時有平整地基的措施。
測量學在工程建設中的作用 ?
現(xiàn)代的測量學作為一門能采集和表示各種地物和地貌的形狀、大小、位置等幾何信息,以及能把設計的建筑物、設備等按設計的形狀、大小和位置準確地在實地標定出來的技術(shù),在各種工程建設中的應用愈來愈廣泛。
例如,粒子加速器的磁塊必須以0.1mm的精度安放在設計的位置上。某些飛行器的助飛軌道要求其準直度的偏差小于長度的10-6。建筑物建成后(甚至在施工期間)會因地基承載力弱或因自重和外力的作用而產(chǎn)生變形。如大壩可能位移、高層建筑物可能傾斜……等。
為了保障建筑物的安全運行,往往需要測量工作者以技術(shù)上可行的最高精度監(jiān)測建筑物的變形量和變形速度的發(fā)展情況。有時還要求在一段時間內(nèi)進行連續(xù)監(jiān)測,為此要使用自動化的監(jiān)測和記錄的儀器。
認識地球是人類探索的目標之一,也是測量學 的任務之一。
絕大多數(shù)測量工作是在地球上進行,或作為參考系。
一、地球自然表面
不規(guī)則曲面
平均半徑6371km
?珠峰8848.13m,馬里亞那海溝11022m,海洋71%
二、大地水準面(mean sea level)
液體受重力而形成的靜止表面稱為水準面。
同一水準面上的重力位處處相等;
同一水準面上任一點的鉛垂線都與水準面相正交。
與平靜的平均海水面相重合、并延伸通過陸地而形成的封閉曲面稱為大地水準面
大地水準面包圍的形體稱為大地體(Geoid)
大地水準面(續(xù))
由于地表起伏以及地球內(nèi)質(zhì)量分布不均勻,所以大地水準面是個復雜的曲面
水準面和鉛垂線是野外觀測的基準面和基準線。
三、旋轉(zhuǎn)橢球體(ellipse)
由于大地水準面是不規(guī)則曲面,無法準確描述和計算。也難以在其面上處理測量成果。
????
三、旋轉(zhuǎn)橢球體
因此,用一非常接近大地水準面的數(shù)學面------旋轉(zhuǎn)橢球面代替大地水準面,用旋轉(zhuǎn)橢球體描述地球。稱參考橢球體。
?
經(jīng)度與緯度Latitude? and Latitude
子午面------地球上任一點的鉛垂線與地軸所組成的平面。
經(jīng)度-------所在的子午面與首子午面(過英國格林尼治天文臺)的夾角
?緯度-------所在點的鉛垂線與赤道平面之間的夾角。
地面地位的確定
一、球面坐標系統(tǒng)
(一)、天文地理坐標系
測量(天文經(jīng)緯度)的外業(yè)以鉛垂線為準
大地水準面和鉛垂線是天文地理坐標系的主要面和線
地面點的坐標是它沿鉛垂線在大地水準面上投影點的經(jīng)度??? 和緯度
(二)、大地地理坐標系
大地地理坐標系是建立在地球橢球面上的坐標系
地球橢球面和法線是大地地理坐標系的主要面和線
地面點的大地坐標是它沿法線在地球橢球面上投影點的經(jīng)度L和緯度B
二、地圖投影?? 平面坐標系??
為了簡化計算,要將(橢)球面上的元素歸算(投影)到平面上。
所謂投影就是建立起(橢)球面上的點與平面上的點一一對應的數(shù)學關(guān)系。
地圖投影學就是研究這個問題的學科,是數(shù)學也是地理學的一個分支學科。
基本類型有:圓錐投影,圓柱投影,平面投影,任意投影等。
(一)高斯平面直角坐標系
高斯投影是等角橫切橢圓柱投影。
等角投影就是正形投影。所謂,正形投影,就是在極小的區(qū)域內(nèi)橢球面上的圖形投影后保持形狀相似。即投影后角度不變形。
標準地形圖的分幅和編號
點在高斯平面直角坐標系中的坐標值
理論上中央子午線的投影是X軸,赤道的投影是Y軸,其交點是坐標原點。
點的X坐標是點至赤道的距離;
點的Y坐標是點至中央子午線的距離,設為y’;y’有正有負。
為了避免Y坐標出現(xiàn)負值,把原點向西平移500公里。
為了區(qū)分不同投影帶中的點,在點的Y坐標值上加帶號N
所以點的橫坐標通用值為
???? y=N*1000000+500000+y’
高斯平面直角坐標系 小結(jié)
橢圓柱與橢球面橫切于某一條子午線(稱為中央子午線)
中央子午線和赤道的投影為相互正交的兩條直線。
中央子午線的投影為縱軸X,赤道的投影為橫軸Y,它們的交點為原點O。
高斯平面直角坐標系常簡稱高斯坐標系
中央子午線和赤道被投影為相互正交的直線
其它經(jīng)線投影成為凹向中央子午線,且以中央子午線為對稱軸的曲線。全部經(jīng)線的投影收斂于兩極
把曲面上的圖形投影到平面上必然會伴有變形。變形有三類:角度變形,長度變形,面積變形
高斯投影是正形投影,無角度變形
例:所有經(jīng)緯線投影后仍保持兩兩相互正交
中央經(jīng)線投影后長度不變
其它經(jīng)緯線投影后均變長,離中央經(jīng)線越遠其長度變形越大
有長度變形也就有面積變形
高斯平面直角坐標系 高斯坐標系的作用
使較復雜的橢球面上的計算變?yōu)楸容^簡單的平面上的計算
便于地圖按經(jīng)緯線分幅。如將圖廓點(其地理坐標為經(jīng)緯度)按其相應的高斯坐標展繪在圖紙上,就可得地圖的分幅線。
將大地控制點按其高斯坐標展在平面上,作為工程測量和地形測量的起始點
(二)地平坐標系
地平坐標系是平面直角坐標系
地平坐標系以當?shù)氐乃矫鏋橹饕?不需要投影)
通常以當?shù)氐谋狈较驗樽鴺溯S的正方向
地平坐標系只用于小的局部地區(qū)
三、空間三維坐標系 (一)、地心坐標系
地心平坐標系是以地球質(zhì)心為坐標原點,以地軸為Z軸,正向指向北極;XY平面與赤道面重合,X軸指向起始子午面 。
(二)、參心坐標系
參心平坐標系是以參考橢球體的中心為坐標原點,以橢球修整軸(短軸)為Z軸,正向指向北極;XY平面與赤道面重合,X軸指向起始子午面 。
四、地面點的高程(Elevation)
高程(絕對高程、海拔)-----地面點到大地水準面的鉛垂距離。
假定(相對)高程-----地面點到假定水準面的鉛垂距離。
高差-----兩點間的各處之差。
評論
查看更多