由于鋰電池的體積密度、能量密度高,并有高達(dá)4.2V的單節(jié)電池電壓,因此在手機(jī)、PDA和數(shù)碼相機(jī)等便攜式電子產(chǎn)品中獲得了廣泛的應(yīng)用。為了確保使用的安全性,鋰電池在應(yīng)用中必須有相應(yīng)的電池管理電路來(lái)防止電池的過(guò)充電、過(guò)放電和過(guò)電流。鋰電池保護(hù)IC超小的封裝和很少的外部器件需求使它在單節(jié)鋰電池保護(hù)電路的設(shè)計(jì)中被廣泛采用。
然而,目前無(wú)論是正向(獨(dú)立開發(fā))還是反向(模仿開發(fā))設(shè)計(jì)的國(guó)產(chǎn)鋰電池保護(hù)IC由于技術(shù)、工藝的原因,實(shí)際參數(shù)通常都與標(biāo)準(zhǔn)參數(shù)有較大差別,在正向設(shè)計(jì)的IC中尤為突出,因此,測(cè)試鋰電池保護(hù)IC的實(shí)際工作參數(shù)已經(jīng)成為必要。目前市場(chǎng)上已經(jīng)出現(xiàn)了專用的鋰電池保護(hù)板測(cè)試儀,但價(jià)格普遍偏高,并且測(cè)試時(shí)必須先將IC焊接在電路板上。因此,本文中設(shè)計(jì)了一個(gè)簡(jiǎn)單的測(cè)試電路,借助普通的電子儀器就可以完成對(duì)鋰電池保護(hù)IC的測(cè)試。
鋰電池保護(hù)IC的工作原理
單節(jié)鋰電池保護(hù)IC的應(yīng)用電路很簡(jiǎn)單,只需外接2個(gè)電阻、2個(gè)電容和2個(gè)MOSFET,其典型應(yīng)用電路如圖1所示。
圖1 鋰電池保護(hù)IC的典型應(yīng)用電路
鋰電池保護(hù)IC測(cè)試電路設(shè)計(jì)
圖2 鋰電池保護(hù)IC測(cè)試電路
根據(jù)鋰電池保護(hù)IC的工作原理設(shè)計(jì)的測(cè)試電路如圖2所示,圖3詳細(xì)說(shuō)明了圖2中模塊B的電路。模塊A在測(cè)試過(guò)流保護(hù)時(shí)為CS引腳提供電壓,模擬圖1中的CS引腳所探測(cè)到的電壓。調(diào)整模塊中的可變電位器可為CS引腳提供可變電源,控制其中的跳變開關(guān)可為CS提供突變電壓。模塊B為電源,模擬為IC提供工作電壓。調(diào)整電路中的可變電位器R7可為整個(gè)電路提供一個(gè)可變電壓,在測(cè)試過(guò)充電保護(hù)電壓和過(guò)放電保護(hù)電壓時(shí)使用。控制模塊中的開關(guān)S1的閉合為測(cè)試電路提供一個(gè)跳變電源,在測(cè)試IC的過(guò)充、過(guò)放和過(guò)流延遲時(shí)使用。跳線端口P1、P2在測(cè)試IC工作電流時(shí)使用,在測(cè)試其他參數(shù)時(shí)將開關(guān)S2導(dǎo)通即可。測(cè)試IC工作電流時(shí),將電流表接在P1、P2上,將開關(guān)S2斷開。模塊C是用2個(gè)MOSFET做成的微電流源,在測(cè)試OD、OC輸出高、低電平時(shí)向該引腳吸、灌電流,只要MOSFET選擇恰當(dāng),可以滿足測(cè)試需要。模塊D是2片MOSFET集成芯片,相當(dāng)于圖1中的M1、M2,其中的兩個(gè)端口在測(cè)試MOSFET漏電流時(shí)使用,在測(cè)試其他參數(shù)時(shí)要將這兩個(gè)端口短接。模塊E是一個(gè)IC插座,該插座用于放置待測(cè)IC,最多可以放置4片IC(測(cè)試時(shí)只能放一片IC),測(cè)試完以后可以將IC取出,不留任何痕跡,不影響IC的銷售和再次測(cè)試。
用戶評(píng)論
共 0 條評(píng)論