電路描述
流至負載的電流流經電阻RSHUNT。該電阻上的電壓由AD8210以20 V/V的增益放大。AD8210可以承受?2 V至+65 V范圍內的輸入共模電壓。它還具有高共模抑制(CMR)特性,即使存在PWM共模信號也能監控電流,例如監控H-橋配置中受驅動電機的相位電流。圖2顯示監控PWM電機電流時的典型波形,圖3顯示電路過載特征。
圖2. AD8210輸出電壓與負載電流成比例,AD8274對AD8210進行輸出電平轉換
圖3. 過載條件下AD8210和AD8274的輸出電壓
AD8210輸出與分流電阻上的電流成比例,其傳遞函數如下:
AD8210輸出偏置2.5 V,將兩個 VREF 引腳與2.5 V精密基準電壓源AD780相連即可實現。這樣,AD8210便能夠雙向監控流經分流電阻的電流。當電流從正輸入端流至負輸入端時,輸出變為2.5 V以上的正電壓。當電流反向流動時,輸出變為2.5 V以下的負電壓。AD780輸出端也與AD8274負輸入端相連,確保AD8274輸入具有與AD8210相同的共模電壓。AD8274的正輸入端直接與 AD8210輸出端相連。AD8274采用±15 V電源供電,并且配置為同相2倍增益模式。它計算其兩個輸入之間的差值,并采用2倍增益。
由于兩路輸入均以2.5 V為中心,因此AD8274僅放大差值,由此可獲得該系統的輸入至輸出傳遞函數:
將引腳3與GND相連,AD8274的輸出共模電壓可設置為0 V。因此,輸出電壓的正負取決于分流電阻上負載電流的方向。
本電路提供了一種簡單、精確的電流監控解決方案。AD8210可消除高共模電壓,僅放大分流電阻上的小電壓,從而提供以所施加的2.5 V基準電壓為中心的輸出電壓。利用AD8274則能輕松地與電路中采用雙電源供電的其它器件實現接口。它可消除AD8210的2.5 V共模偏移,并相對于GND轉換AD8210的輸出電平。
1 μF電容用來對AD780輸入與輸出引腳之間的基準電壓源去耦。應將一個0.1 μF低電感陶瓷去耦電容(圖中未顯示)與VS相連,并使其非常靠近這兩個IC。典型的去耦網絡由一個1 μF至10 μF電解電容和一個0.1 μF低電感陶瓷MLCC型電容并聯構成。
為了使本文所討論的電路達到理想的性能,必須采用出色的布局、接地和去耦技術(請參考教程MT-031 和 教程MT-101)。至少應采用四層PCB:一層為接地層,一層為電源層,另兩層為信號層。
常見變化
AD8274具有較寬的電源電壓范圍,可以采用±5 V等較低電壓雙電源供電。上述電路應用選擇增益2來提供最寬的動態范圍,但根據用戶的需求不同,也可以將AD8274配置為增益為?的差動放大器。諸如AD8271和AD8276等其它差動放大器可以提供單位增益的精密電平轉換。
基于AD8210的5 V電源建立電阻分壓器后,也可以獲得2.5 V基準電壓。由于必須采用低阻抗源才能保持數據手冊中規定的增益和失調額定值,因此必須用緩沖器來驅動AD8210和AD8274的基準電壓引腳。
AD780是一款超高精度基準電壓源,在全部溫度、負載和線路條件下均具有出色的輸出穩定性。在誤差預算稍高的應用中,也可以使用 ADR421 或 ADR03等成本較低的基準電壓源。
評論
查看更多