半導體材料有哪些元素
半導體( semiconductor),指常溫下導電性能介于導體(conductor)與絕緣體(insulator)之間的材料。半導體在收音機、電視機以及測溫上有著廣泛的應用。如二極管就是采用半導體制作的器件。半導體是指一種導電性可受控制,范圍可從絕緣體至導體之間的材料。無論從科技或是經濟發展的角度來看,半導體的重要性都是非常巨大的。今日大部分的電子產品,如計算機、移動電話或是數字錄音機當中的核心單元都和半導體有著極為密切的關連。常見的半導體材料有硅、鍺、砷化鎵等,而硅更是各種半導體材料中,在商業應用上最具有影響力的一種。
鍺和硅是最常用的元素半導體;化合物半導體包括第Ⅲ和第Ⅴ族化合物(砷化鎵、磷化鎵等)、第Ⅱ和第Ⅵ族化合物( 硫化鎘、硫化鋅等)、氧化物(錳、鉻、鐵、銅的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物組成的固溶體(鎵鋁砷、鎵砷磷等)。除上述晶態半導體外,還有非晶態的玻璃半導體、有機半導體等。
具有半導體特性的元素,如硅、鍺、硼、硒、碲、碳、碘等組成的材料。其導電能力介乎導體和絕緣體之間。。主要采用直拉法、區熔法或外延法制備。工業上應用最多的是硅、鍺、硒。用于制作各種晶體管、整流器、集成電路、太陽能電池等方面。其他硼、碳(金剛石、石墨)、碲、碘及紅磷、灰砷、灰銻、灰鉛、硫也是半導體,但都尚未得到應用。
在元素周期表的ⅢA族至ⅦA族分布著11種具有半導性的元素,下表的黑框中即這11種元素半導體,其中C表示金剛石。C、P、Se具有絕緣體與半導體兩種形態;B、Si、Ge、Te具有半導性;Sn、As、Sb具有半導體與金屬兩種形態。P的熔點與沸點太低,Ⅰ的蒸汽壓太高、容易分解,所以它們的實用價值不大。As、Sb、Sn的穩定態是金屬,半導體是不穩定的形態。B、C、Te也因制備工藝上的困難和性能方面的局限性而尚未被利用。因此這11種元素半導體中只有Ge、Si、Se 3種元素已得到利用。Ge、Si仍是所有半導體材料中應用最廣的兩種材料。
元素半導體舉例
硅和鍺是我們最熟悉的元素半導體。鍺是最早實現提純和完美晶體生長,并最早用來制造晶體管的半導體材料。但是,由于鍺的禁帶較窄,鍺器件的穩定工作溫度遠不如硅器件高,加之資源有限,其重要地位早在半導體工業發展初期就被硅所取代。目前,鍺僅以其較高的載流子遷移率和在某些重摻雜情況下的高度紅外敏感特性,在低頻小功率晶體管以及遠紅外探測器等方面維持著有限的應用。最近,由于半導體能帶工程研究的興起,鍺硅合金因其能帶結構可以根據需要而改變受到普遍重視,鍺作為這種合金的主要成分而得到新的應用。
硅以其優越的物理性質、成熟而較為容易的制備方法以及地球上豐富的資源而成為當前應用最為廣泛的元素半導體。硅在地殼中的資源含量約為27%,因而自20世紀50年代末起,隨著提純和晶體生長技術以及硅平面工藝的發展,硅很快就在半導體工業中取代了鍺的位置。到目前為止,二極管、晶體管和集成電路的制造,仍然是半導體工業的核心內容,而晶體硅則是制造這些器件的最主要材料。
硅在半導體工業中獲得最廣泛的應用,這在很大程度上得益于二氧化硅的特殊性質。首先,二氧化硅薄膜層能夠有效地掩蔽大多數重要的受主和施主雜質的擴散,從而為器件制造工藝中的選擇擴散提供了最理想的掩膜,使器件的集合圖形可以得到精確的控制;其次,有氧化膜的硅表面比自由表面有更好的電特性,因而硅器件比較容易解決表面的鈍化問題,容易使器件特性獲得良好的重復性和穩定性;此外,由于二氧化硅是一種性能很穩定的絕緣體,將它夾在硅與金屬之間構成的金屬一氧化物一半導體結構。是MOS型場效應晶體管的基礎,這是一種只利用多數載流子工作的單極性器件。由于化合物半導體材料的氧化物在性質上都存在著一些尚難克服的短處,硅MOSFET是目前唯一能夠普遍應用的MOS器件。
半導體材料有什么優勢
半導體材料是室溫下導電性介于導電材料和絕緣材料之間的一類功能材料。靠電子和空穴兩種載流子實現導電,室溫時電阻率一般在10-5~107歐·米之間。通常電阻率隨溫度升高而增大;若摻入活性雜質或用光、射線輻照,可使其電阻率有幾個數量級的變化。1906年制成了碳化硅檢波器。
1947年發明晶體管以后,半導體材料作為一個獨立的材料領域得到了很大的發展,并成為電子工業和高技術領域中不可缺少的材料。特性和參數半導體材料的導電性對某些微量雜質極敏感。純度很高的半導體材料稱為本征半導體,常溫下其電阻率很高,是電的不良導體。在高純半導體材料中摻入適當雜質后,由于雜質原子提供導電載流子,使材料的電阻率大為降低。這種摻雜半導體常稱為雜質半導體。雜質半導體靠導帶電子導電的稱N型半導體,靠價帶空穴導電的稱P型半導體。
不同類型半導體間接觸(構成PN結)或半導體與金屬接觸時,因電子(或空穴)濃度差而產生擴散,在接觸處形成位壘,因而這類接觸具有單向導電性。利用PN結的單向導電性,可以制成具有不同功能的半導體器件,如二極管、三極管、晶閘管等。
此外,半導體材料的導電性對外界條件的變化非常敏感,據此可以制造各種敏感元件,用于信息轉換。半導體材料的特性參數有禁帶寬度、電阻率、載流子遷移率、非平衡載流子壽命和位錯密度。禁帶寬度由半導體的電子態、原子組態決定,反映組成這種材料的原子中價電子從束縛狀態激發到自由狀態所需的能量。電阻率、載流子遷移率反映材料的導電能力。非平衡載流子壽命反映半導體材料在外界作用(如光或電場)下內部載流子由非平衡狀態向平衡狀態過渡的弛豫特性。位錯是晶體中最常見的一類缺陷。位錯密度用來衡量半導體單晶材料晶格完整性的程度,對于非晶態半導體材料,則沒有這一參數。半導體材料的特性參數不僅能反映半導體材料與其他非半導體材料之間的差別,更重要的是能反映各種半導體材料之間甚至同一種材料在不同情況下,其特性的量值差別。
非常好我支持^.^
(79) 100%
不好我反對
(0) 0%
相關閱讀:
- [電子說] 金川蘭新電子半導體封裝新材料生產線項目主體封頂 2023-10-24
- [電子說] 使用半大馬士革工藝流程研究后段器件集成的工藝 2023-10-24
- [電子說] ESD介紹及TVS的原理和應用 2023-10-24
- [電子說] 怎樣延長半導體元器件的壽命呢? 2023-10-24
- [電子說] 瑞能半導體:碳化硅助力加速新能源汽車行業發展 2023-10-24
- [電子說] 氮化鎵充電器如何變得更快更強 2023-10-24
- [制造/封裝] 晶圓鍵合的種類和應用 2023-10-24
- [制造/封裝] 什么是引線鍵合?引線鍵合的演變 2023-10-24
( 發表人:李倩 )