精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

您好,歡迎來電子發燒友網! ,新用戶?[免費注冊]

您的位置:電子發燒友網>電子百科>汽車電子>汽車防盜與安全>

車牌識別系統的識別原理及觸發方式

2017年11月13日 17:20 互聯網 作者: 用戶評論(0

  車牌識別系統(Vehicle License Plate Recognition,VLPR) 是指能夠檢測到受監控路面的車輛并自動提取車輛牌照信息(含漢字字符、英文字母、阿拉伯數字及號牌顏色)進行處理的技術。車牌識別是現代智能交通系統中的重要組成部分之一,應用十分廣泛。它以數字圖像處理、模式識別、計算機視覺等技術為基礎,對攝像機所拍攝的車輛圖像或者視頻序列進行分析,得到每一輛汽車唯一的車牌號碼,從而完成識別過程。通過一些后續處理手段可以實現停車場收費管理,交通流量控制指標測量,車輛定位,汽車防盜,高速公路超速自動化監管、闖紅燈電子警察、公路收費站等等功能。對于維護交通安全和城市治安,防止交通堵塞,實現交通自動化管理有著現實的意義。

  汽車牌照號碼是車輛的唯一“身份”標識,牌照自動識別技術可以在汽車不作任何改動的情況下實現汽車“身份”的自動登記及驗證,這項技術已經應用于公路收費、停車管理、稱重系統、交通誘導、交通執法、公路稽查、車輛調度、車輛檢測等各種場合。

車牌識別系統的識別原理及觸發方式

  車牌識別系統的識別原理

  識別流程

車牌識別系統的識別原理及觸發方式

  車牌自動識別是一項利用車輛的動態視頻或靜態圖像進行牌照號碼、牌照顏色自動識別的模式識別技術。其硬件基礎一般包括觸發設備(監測車輛是否進入視野)、攝像設備、照明設備、圖像采集設備、識別車牌號碼的處理機(如計算機)等,其軟件核心包括車牌定位算法、車牌字符分割算法和光學字符識別算法等。某些車牌識別系統還具有通過視頻圖像判斷是否有車的功能稱之為視頻車輛檢測。

  一個完整的車牌識別系統應包括車輛檢測、圖像采集、車牌識別等幾部分(如圖所示)。當車輛檢測部分檢測到車輛到達時觸發圖像采集單元,采集當前的視頻圖像。車牌識別單元對圖像進行處理,定位出牌照位置,再將牌照中的字符分割出來進行識別,然后組成牌照號碼輸出。

  車輛檢測

  車輛檢測可以采用埋地線圈檢測、紅外檢測、雷達檢測技術、視頻檢測等多種方式。采用視頻檢測可以避免破壞路面、不必附加外部檢測設備、不需矯正觸發位置、節省開支,而且更適合移動式、便攜式應用的要求。

  系統進行視頻車輛檢測,需要具備很高的處理速度并采用優秀的算法,在基本不丟幀的情況下實現圖像采集、處理。若處理速度慢,則導致丟幀,使系統無法檢測到行駛速度較快的車輛,同時也難以保證在有利于識別的位置開始識別處理,影響系統識別率。因此,將視頻車輛檢測與牌照自動識別相結合具備一定的技術難度。

  號碼識別

車牌識別系統的識別原理及觸發方式

  為了進行車牌識別,需要以下幾個基本的步驟:

  1) 牌照定位,定位圖片中的牌照位置;

  2) 牌照字符分割,把牌照中的字符分割出來;

  3) 牌照字符識別,把分割好的字符進行識別,最終組成牌照號碼。

  車牌識別過程中,牌照顏色的識別依據算法不同,可能在上述不同步驟實現,通常與車牌識別互相配合、互相驗證。

  1) 牌照定位

  自然環境下,汽車圖像背景復雜、光照不均勻,如何在自然背景中準確地確定牌照區域是整個識別過程的關鍵。首先對采集到的視頻圖像進行大范圍相關搜索,找到符合汽車牌照特征的若干區域作為候選區,然后對這些侯選區域做進一步分析、評判,最后選定一個最佳的區域作為牌照區域,并將其從圖像中分離出來。

  2) 牌照字符分割

  完成牌照區域的定位后,再將牌照區域分割成單個字符,然后進行識別。字符分割一般采用垂直投影法。由于字符在垂直方向上的投影必然在字符間或字符內的間隙處取得局部最小值的附近,并且這個位置應滿足牌照的字符書寫格式、字符、尺寸限制和一些其他條件。利用垂直投影法對復雜環境下的汽車圖像中的字符分割有較好的效果。

  3) 牌照字符識別方法主要有基于模板匹配算法和基于人工神經網絡算法。基于模板匹配算法首先將分割后的字符二值化并將其尺寸大小縮放為字符數據庫中模板的大小,然后與所有的模板進行匹配,選擇最佳匹配作為結果。

  基于人工神經網絡的算法有兩種:一種是先對字符進行特征提取,然后用所獲得特征來訓練神經網絡分配器;另一種方法是直接把圖像輸入網絡,由網絡自動實現特征提取直至識別出結果。

  實際應用中,車牌識別系統的識別率還與牌照質量和拍攝質量密切相關。牌照質量會受到各種因素的影響,如生銹、污損、油漆剝落、字體褪色、牌照被遮擋、牌照傾斜、高亮反光、多牌照、假牌照等等;實際拍攝過程也會受到環境亮度、拍攝方式、車輛速度等等因素的影響。這些影響因素不同程度上降低了車牌識別的識別率,也正是車牌識別系統的困難和挑戰所在。為了提高識別率,除了不斷地完善識別算法還應該想辦法克服各種光照條件,使采集到的圖像最利于識別。

  車牌識別系統觸發方式

車牌識別系統的識別原理及觸發方式

  車牌識別系統有兩種觸發方式,一種是外設觸發,另一種是視頻觸發。

  1、外設觸發工作方式是指采用線圈、紅外或其他檢測器檢測車輛通過信號,車牌識別系統接受到車輛觸發信號后,采集車輛圖像,自動識別車牌,以及進行后續處理。

  該方法的優點是觸發率高,性能穩定;缺點是需要切割地面鋪設線圈,施工量大。

  2、視頻觸發工作方式是指車牌識別系統采用動態運動目標序列圖像分析處理技術,實時檢測車道上車輛移動狀況,發現車輛通過時捕捉車輛圖像,識別車牌照,并進行后續處理。視頻觸發方式不需借助線圈、紅外或其他硬件車輛檢測器。

  該方法的優點是施工方便,不需要切割地面鋪設線圈,也不需要安裝車檢器等零部件,但其缺點也十分顯著,由于算法的極限,該方案的觸發率與識別率較之外設觸發都要低很多。

  1)間接法:指通過識別安裝在汽車上的IC卡或條形碼中所存儲的車牌的信息來識別車牌及相關信息。IC卡技術識別準確度高,運行可靠,可以全天候作業,但它整套裝置價格昂貴,硬件設備十分復雜,不適用于異地作業;條形碼技術具有識別速度快、準確度高、可靠性強以及成本較低等優點,但是對于掃描器要求很高。此外,二者都需要制定出全國統一的標準,并且無法核對車、條形碼是否相符,也是技術上存在的缺點,這給在短時間內推廣造成困難。

  2)直接法:基于圖像的車牌識別技術屬于直接法,是一種無源型汽車牌照智能識別方法,能夠在無任何專用發送車牌信號的車載發射設備情況下,對運動狀態車輛或靜止狀態車輛的車牌號碼進行非接觸性信息采集并實時智能識別。與間接法識別系統相比,首先,這種系統節省了設備安置及大量資金,從而提高了經濟效益;其次,由于采用了先進的計算機應用技術,所以可提高識別速度,較好地解決實時性問題;再次,它是根據圖像進行識別,所以通過人的參與可以解決系統中的識別錯誤,而其他方法是難以與人交互的。

  直接法一般有圖像處理技術,傳統模式識別技術及人工神經網絡技術。

車牌識別系統的識別原理及觸發方式

  a圖像處理技術:運用圖像處理技術解決汽車牌照識別的研究最早始于80年代,但國內外均只是就車牌識別中的某一個具體問題進行討論,并且通常僅采用簡單的圖像處理技術來解決,并沒有形成完整的系統體系,識別過程是使用工業電視攝像機拍下汽車的工前方圖像,然后交給計算機進行簡單的處理,并且最終仍需要人工干預,例如車輛牌照中省份漢字的識別問題,1985年有人利用常見的圖像處理技木方法提出漢字識別的分類是在抽取漢字特征的基礎上進行的,根據漢字的投影直方圖選取浮動閉值,抽取漢字在豎直方向的峰值,利用樹形查表法進行漢字的粗分類;然后根據漢字在水平方向的投影直方圖,選取適當閉值,進行量化處理后,形成一個變長鏈碼,再用動態規劃法,求出與標準模式鏈碼的最小距離,實現細分米完成漢字省名的自動識別。

  b傳統模式識別技術:傳統模式識別技術指結構特征法,統計特征法等。90年代,由于計算機視覺技術的發展,開始出現汽車牌照識別的系統化研究。1990年AS.Johnson等運用計算機視覺技術和圖像處理技術實現了車輛牌照的自動識別系統。該系統分為圖像分割、特征提取和模板構造、字符識別等三個部分。利用不同閩值對應的直方圖不同,經過大量統計實驗確定出車牌位置的圖像直方圖的閩值范圍,從而根據特定閩值對應的直方圖分割出車牌,再利用預先設置的標準字符模板進行模式匹配識別出字符。

  c人工神經網絡技術:近幾年來,計算機及相關技術發達的一些國家開始探討用人工神經網絡技術解決車牌自動識別問題,例如1994年M.M.M.FANHY等就成功地運用了BAM神經網絡方法對車牌上的字符進行自動識別,BAM神經網絡是由相同神經元構成的雙向聯想式單層網絡,每一個字符模板對應著唯一個BAM矩陣,通過與車牌上的字符比較,識別出正確的車牌號碼。這種采用BAM神經網絡方法的缺點是無映解決識別系統存儲容量和處理速度相矛盾的問題。

非常好我支持^.^

(7) 6.4%

不好我反對

(103) 93.6%

( 發表人:羅勇杰 )

      發表評論

      用戶評論
      評價:好評中評差評

      發表評論,獲取積分! 請遵守相關規定!

      ?