什么是人工智能
什么是人工智能
百科名片
人工智能(Artificial Intelligence) ,英文縮寫為AI。它是研究、開發用于模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。 人工智能是計算機科學的一個分支,它企圖了解智能的實質,并生產出一種新的能以人類智能相似的方式做出反應的智能機器,該領域的研究包括機器人、語言識別、圖像識別、自然語言處理和專家系統等。 同名的還有美國科幻電影《人工智能》等。
“人工智能”一詞最初是在1956 年Dartmouth學會上提出的。從那以后,研究者們發展了眾多理論和原理,人工智能的概念也隨之擴展。人工智能是一門極富挑戰性的科學,從事這項工作的人必須懂得計算機知識,心理學和哲學。人工智能是包括十分廣泛的科學,它由不同的領域組成,如機器學習,計算機視覺等等,總的說來,人工智能研究的一個主要目標是使機器能夠勝任一些通常需要人類智能才能完成的復雜工作。但不同的時代、不同的人對這種“復雜工作”的理解是不同的。例如繁重的科學和工程計算本來是要人腦來承擔的,現在計算機不但能完成這種計算, 而且能夠比人腦做得更快、更準確,因之當代人已不再把這種計算看作是“需要人類智能才能完成的復雜任務”, 可見復雜工作的定義是隨著時代的發展和技術的進步而變化的, 人工智能這門科學的具體目標也自然隨著時代的變化而發展。它一方面不斷獲得新的進展,一方面又轉向更有意義、更加困難的目標。目前能夠用來研究人工智能的主要物質手段以及能夠實現人工智能技術的機器就是計算機, 人工智能的發展歷史是和計算機科學與技術的發展史聯系在一起的。除了計算機科學以外, 人工智能還涉及信息論、控制論、自動化、仿生學、生物學、心理學、數理邏輯、語言學、醫學和哲學等多門學科。人工智能學科研究的主要內容包括:知識表示、自動推理和搜索方法、機器學習和知識獲取、知識處理系統、自然語言理解、計算機視覺、智能機器人、自動程序設計等方面。
實際應用 機器視覺:指紋識別,人臉識別,視網膜識別,虹膜識別,掌紋識別,專家系統,智能搜索,定理證明,博弈,自動程序設計,還有航天應用等。
學科范疇 人工智能是一門邊沿學科,屬于自然科學和社會科學的交叉。
涉及學科 哲學和認知科學,數學,神經生理學,心理學,計算機科學,信息論,控制論,不定性論,仿生學,
研究范疇 自然語言處理,知識表現,智能搜索,推理,規劃,機器學習,知識獲取,組合調度問題,感知問題,模式識別,邏輯程序設計,軟計算,不精確和不確定的管理,人工生命,神經網絡,復雜系統,遺傳算法 人類思維方式
應用領域 智能控制,機器人學,語言和圖像理解,遺傳編程 機器人工廠
安全問題
目前人工智能還在研究中,但有學者認為讓計算機擁有智商是很危險的,它可能會反抗人類。這種隱患也在多部電影中發生過。
定義
人工智能的定義可以分為兩部分,即“人工”和“智能”。“人工”比較好理解,爭議性也不大。有時我們會要考慮什么是人力所能及制造的,或者人自身的智能程度有沒有高到可以創造人工智能的地步,等等。但總的來說,“人工系統”就是通常意義下的人工系統。
關于什么是“智能”,就問題多多了。這涉及到其它諸如意識(consciousness)、自我(self)、思維(mind)(包括無意識的思維(unconscious_mind)等等問題。人唯一了解的智能是人本身的智能,這是普遍認同的觀點。但是我們對我們自身智能的理解都非常有限,對構成人的智能的必要元素也了解有限,所以就很難定義什么是“人工”制造的“智能”了。因此人工智能的研究往往涉及對人的智能本身的研究。其它關于動物或其它人造系統的智能也普遍被認為是人工智能相關的研究課題。
人工智能目前在計算機領域內,得到了愈加廣泛的重視。并在機器人,經濟政治決策,控制系統,仿真系統中得到應用。
著名的美國斯坦福大學人工智能研究中心尼爾遜教授對人工智能下了這樣一個定義:“人工智能是關于知識的學科――怎樣表示知識以及怎樣獲得知識并使用知識的科學。”而另一個美國麻省理工學院的溫斯頓教授認為:“人工智能就是研究如何使計算機去做過去只有人才能做的智能工作。”這些說法反映了人工智能學科的基本思想和基本內容。即人工智能是研究人類智能活動的規律,構造具有一定智能的人工系統,研究如何讓計算機去完成以往需要人的智力才能勝任的工作,也就是研究如何應用計算機的軟硬件來模擬人類某些智能行為的基本理論、方法和技術。
人工智能(Artificial Intelligence,簡稱AI)是計算機學科的一個分支,二十世紀七十年代以來被稱為世界三大尖端技術之一(空間技術、能源技術、人工智能)。也被認為是二十一世紀(基因工程、納米科學、人工智能)三大尖端技術之一。這是因為近三十年來它獲得了迅速的發展,在很多學科領域都獲得了廣泛應用,并取得了豐碩的成果,人工智能已逐步成為一個獨立的分支,無論在理論和實踐上都已自成一個系統。
人工智能是研究使計算機來模擬人的某些思維過程和智能行為(如學習、推理、思考、規劃等)的學科,主要包括計算機實現智能的原理、制造類似于人腦智能的計算機,使計算機能實現更高層次的應用。人工智能將涉及到計算機科學、心理學、哲學和語言學等學科。可以說幾乎是自然科學和社會科學的所有學科,其范圍已遠遠超出了計算機科學的范疇,人工智能與思維科學的關系是實踐和理論的關系,人工智能是處于思維科學的技術應用層次,是它的一個應用分支。從思維觀點看,人工智能不僅限于邏輯思維,要考慮形象思維、靈感思維才能促進人工智能的突破性的發展,數學常被認為是多種學科的基礎科學,數學也進入語言、思維領域,人工智能學科也必須借用數學工具,數學不僅在標準邏輯、模糊數學等范圍發揮作用,數學進入人工智能學科,它們將互相促進而更快地發展。
簡史
人工智能的傳說可以追溯到古埃及,但隨著1941年以來電子計算機的發展,技術已最終可以創造出機器智能,“人工智能”(Artificial Intelligence)一詞最初是在1956年Dartmouth學會上提出的,從那以后,研究者們發展了眾多理論和原理,人工智能的概念也隨之擴展,在它還不長的歷史中,人工智能的發展比預想的要慢,但一直在前進,從40年前出現到現在,已經出現了許多AI程序,并且它們也影響到了其它 技術的發展。
計算機時代
1941年的一項發明使信息存儲和處理的各個方面都發生了革命.這項同時在美國和德國出現的 發明就是電子計算機.第一臺計算機要占用幾間裝空調的大房間,對程序員來說是場惡夢:僅僅為運行一 個程序就要設置成千的線路.1949年改進后的能存儲程序的計算機使得輸入程序變得簡單些,而且計算機 理論的發展產生了計算機科學,并最終促使了人工智能的出現.計算機這個用電子方式處理數據的發明, 為人工智能的可能實現提供了一種媒介.
AI的開端
雖然計算機為AI提供了必要的技術基礎,但直到50年代早期人們才注意到人類智能與機器之間 的聯系. Norbert Wiener是最早研究反饋理論的美國人之一.最熟悉的反饋控制的例子是自動調溫器.它 將收集到的房間溫度與希望的溫度比較,并做出反應將加熱器開大或關小,從而控制環境溫度.這項對反饋 回路的研究重要性在于: Wiener從理論上指出,所有的智能活動都是反饋機制的結果.而反饋機制是有可 能用機器模擬的.這項發現對早期AI的發展影響很大.
1955年末,Newell和Simon做了一個名為"邏輯專家"(Logic Theorist)的程序.這個程序被許多人 認為是第一個AI程序.它將每個問題都表示成一個樹形模型,然后選擇最可能得到正確結論的那一枝來求解 問題."邏輯專家"對公眾和AI研究領域產生的影響使它成為AI發展中一個重要的里程碑.1956年,被認為是 人工智能之父的John McCarthy組織了一次學會,將許多對機器智能感興趣的專家學者聚集在一起進行了一 個月的討論.他請他們到 Vermont參加 " Dartmouth人工智能夏季研究會".從那時起,這個領域被命名為 "人工智能".雖然 Dartmouth學會不是非常成功,但它確實集中了AI的創立者們,并為以后的AI研究奠定了基礎.
Dartmouth會議后的7年中,AI研究開始快速發展.雖然這個領域還沒明確定義,會議中的一些思想 已被重新考慮和使用了. Carnegie Mellon大學和MIT開始組建AI研究中心.研究面臨新的挑戰: 下一步需 要建立能夠更有效解決問題的系統,例如在"邏輯專家"中減少搜索;還有就是建立可以自我學習的系統.
1957年一個新程序,"通用解題機"(GPS)的第一個版本進行了測試.這個程序是由制作"邏輯專家" 的同一個組開發的.GPS擴展了Wiener的反饋原理,可以解決很多常識問題.兩年以后,IBM成立了一個AI研 究組.Herbert Gelerneter花3年時間制作了一個解幾何定理的程序.
當越來越多的程序涌現時,McCarthy正忙于一個AI史上的突破.1958年McCarthy宣布了他的新成 果: LISP語言. LISP到今天還在用."LISP"的意思是"表處理"(LISt Processing),它很快就為大多數AI開發者采納.
1963年MIT從美國政府得到一筆220萬美元的資助,用于研究機器輔助識別.這筆資助來自國防部 高級研究計劃署(ARPA),已保證美國在技術進步上領先于蘇聯.這個計劃吸引了來自全世界的計算機科學家, 加快了AI研究的發展步伐.
大量的程序
以后幾年出現了大量程序.其中一個著名的叫"SHRDLU"."SHRDLU"是"微型世界"項目的一部分,包括 在微型世界(例如只有有限數量的幾何形體)中的研究與編程.在MIT由Marvin Minsky領導的研究人員發現, 面對小規模的對象,計算機程序可以解決空間和邏輯問題.其它如在60年代末出現的"STUDENT"可以解決代數 問題,"SIR"可以理解簡單的英語句子.這些程序的結果對處理語言理解和邏輯有所幫助.
70年代另一個進展是專家系統.專家系統可以預測在一定條件下某種解的概率.由于當時計算機已 有巨大容量,專家系統有可能從數據中得出規律.專家系統的市場應用很廣.十年間,專家系統被用于股市預 測,幫助醫生診斷疾病,以及指示礦工確定礦藏位置等.這一切都因為專家系統存儲規律和信息的能力而成為可能.
70年代許多新方法被用于AI開發,著名的如Minsky的構造理論.另外David Marr提出了機器視覺方 面的新理論,例如,如何通過一副圖像的陰影,形狀,顏色,邊界和紋理等基本信息辨別圖像.通過分析這些信 息,可以推斷出圖像可能是什么.同時期另一項成果是PROLOGE語言,于1972年提出. 80年代期間,AI前進更為迅速,并更多地進入商業領域.1986年,美國AI相關軟硬件銷售高達4.25億 美元.專家系統因其效用尤受需求.象數字電氣公司這樣的公司用XCON專家系統為VAX大型機編程.杜邦,通用 汽車公司和波音公司也大量依賴專家系統.為滿足計算機專家的需要,一些生產專家系統輔助制作軟件的公 司,如Teknowledge和Intellicorp成立了。為了查找和改正現有專家系統中的錯誤,又有另外一些專家系統被設計出來.
從實驗室到日常生活
人們開始感受到計算機和人工智能技術的影響.計算機技術不再只屬于實驗室中的一小群研究人員. 個人電腦和眾多技術雜志使計算機技術展現在人們面前.有了象美國人工智能協會這樣的基金會.因為AI開發 的需要,還出現了一陣研究人員進入私人公司的熱潮。150多所像DEC(它雇了700多員工從事AI研究)這樣的公司共花了10億美元在內部的AI開發組上.
其它一些AI領域也在80年代進入市場.其中一項就是機器視覺. Minsky和Marr的成果現在用到了生產線上的相機和計算機中,進行質量控制.盡管還很簡陋,這些系統已能夠通過黑白區別分辨出物件形狀的不同.到1985年美國有一百多個公司生產機器視覺系統,銷售額共達8千萬美元.
但80年代對AI工業來說也不全是好年景.86-87年對AI系統的需求下降,業界損失了近5億美元.象 Teknowledge和Intellicorp兩家共損失超過6百萬美元,大約占利潤的三分之一巨大的損失迫使許多研究領 導者削減經費.另一個另人失望的是國防部高級研究計劃署支持的所謂"智能卡車".這個項目目的是研制一種能完成許多戰地任務的機器人。由于項目缺陷和成功無望,Pentagon停止了項目的經費.
盡管經歷了這些受挫的事件,AI仍在慢慢恢復發展.新的技術在日本被開發出來,如在美國首創的模糊邏輯,它可以從不確定的條件作出決策;還有神經網絡,被視為實現人工智能的可能途徑.總之,80年代AI被引入了市場,并顯示出實用價值.可以確信,它將是通向21世紀之匙. 人工智能技術接受檢驗 在"沙漠風暴"行動中軍方的智能設備經受了戰爭的檢驗.人工智能技術被用于導彈系統和預警顯示以 及其它先進武器.AI技術也進入了家庭.智能電腦的增加吸引了公眾興趣;一些面向蘋果機和IBM兼容機的應用 軟件例如語音和文字識別已可買到;使用模糊邏輯,AI技術簡化了攝像設備.對人工智能相關技術更大的需求促 使新的進步不斷出現.人工智能已經并且將繼續不可避免地改變我們的生活.
專業機構
美國
1. Massachusetts Institute of Technology 麻省理工學院
2. Stanford University 斯坦福大學 (CA)
3. Carnegie Mellon University 卡內基美隆大學 (PA)
4. University of California-Berkeley 加州大學伯克利分校
5. University of Washington 華盛頓大學
6. University of Texas-Austin 德克薩斯大學奧斯汀分校
7. University of Pennsylvania 賓夕法尼亞大學
8. University of Illinois-Urbana-Champaign 伊利諾伊大學厄本那—香檳分校
9. University of Maryland-College Park 馬里蘭大學帕克分校
10. Cornell University 康乃爾大學 (NY)
11. University of Massachusetts-Amherst 馬薩諸塞大學Amherst校區
12. Georgia Institute of Technology 佐治亞理工學院
University of Michigan-Ann Arbor 密西根大學-安娜堡分校
14. University of Southern California 南加州大學
15. Columbia University 哥倫比亞大學 (NY)
University of California-Los Angeles 加州大學-洛杉磯分校
17. Brown University 布朗大學 (RI)
18. Yale University 耶魯大學 (CT)
19. University of California-San Diego 加利福尼亞大學圣地亞哥分校
20. University of Wisconsin-Madison 威斯康星大學麥迪遜分校
中國
1、北京大學
2、清華大學
3、中國科學技術大學
4、哈爾濱工業大學
5、廈門大學人工智能研究所
6、西安交通大學智能車研究所
主要成果
人機對弈
1996年2月10~17日, Garry Kasparov以4:2戰勝“深藍” (Deep Blue)。
1997年5月3~11日, Garry Kasparov以3.5:2.5輸于改進后的“深藍” 。
2003年2月Garry Kasparov 3:3戰平 “小深”(Deep Junior)。
2003年11月Garry Kasparov 2:2戰平 “X3D德國人” (X3D-Fritz )。
$模式識別
???? 采用 $模式識別引擎,分支有2D識別引擎 ,3D識別引擎,駐波識別引擎以及多維識別引擎
目前,2D識別引擎已推出指紋識別,人像識別? ,文字識別,圖像識別 ,車牌識別;駐波識別引擎已推出語音識別;3D識別引擎已推出指紋識別玉帶林中掛(玩游智能版1.25)
自動工程
???? 自動駕駛(OSO系統)
印鈔工廠(¥流水線)
獵鷹系統(YOD繪圖)
知識工程
以知識本身為處理對象,研究如何運用人工智能和軟件技術,設計、構造和維護知識系統
專家系統
智能搜索引擎
計算機視覺和圖像處理
機器翻譯和自然語言理解
數據挖掘和知識發現
意識和人工智能的區別
人工智能就其本質而言,是對人的思維的信息過程的模擬。
對于人的思維模擬可以從兩條道路進行,一是結構模擬,仿照人腦的結構機制,制造出“類人腦”的機器;二是功能模擬,暫時撇開人腦的內部結構,而從其功能過程進行模擬。現代電子計算機的產生便是對人腦思維功能的模擬,是對人腦思維的信息過程的模擬。
人工智能不是人的智能,更不會超過人的智能。
“機器思維”同人類思維的本質區別:
1.人工智能純系無意識的機械的物理的過程,人類智能主要是生理和心理的過程。
2.人工智能沒有社會性。
3.人工智能沒有人類的意識所特有的能動的創造能力。
4.兩者總是人腦的思維在前,電腦的功能在后。
強人工智能和弱人工智能
人工智能的一個比較流行的定義,也是該領域較早的定義,是由約翰·麥卡錫(John McCarthy|)在1956年的達特矛斯會議(Dartmouth Conference)上提出的:人工智能就是要讓機器的行為看起來就象是人所表現出的智能行為一樣。但是這個定義似乎忽略了強人工智能的可能性(見下)。另一個定義指人工智能是人造機器所表現出來的智能性。總體來講,目前對人工智能的定義大多可劃分為四類,即機器“像人一樣思考”、“像人一樣行動”、“理性地思考”和“理性地行動”。這里“行動”應廣義地理解為采取行動,或制定行動的決策,而不是肢體動作。
強人工智能
強人工智能觀點認為有可能制造出真正能推理(Reasoning)和解決問題(Problem_solving)的智能機器,并且,這樣的機器能將被認為是有知覺的,有自我意識的。強人工智能可以有兩類:
類人的人工智能,即機器的思考和推理就像人的思維一樣。
非類人的人工智能,即機器產生了和人完全不一樣的知覺和意識,使用和人完全不一樣的推理方式。
弱人工智能
弱人工智能觀點認為不可能制造出能真正地推理(Reasoning)和解決問題(Problem_solving)的智能機器,這些機器只不過看起來像是智能的,但是并不真正擁有智能,也不會有自主意識。
主流科研集中在弱人工智能上,并且一般認為這一研究領域已經取得可觀的成就。強人工智能的研究則處于停滯不前的狀態下。
對強人工智能的哲學爭論
“強人工智能”一詞最初是約翰·羅杰斯·希爾勒針對計算機和其它信息處理機器創造的,其定義為:
“強人工智能觀點認為計算機不僅是用來研究人的思維的一種工具;相反,只要運行適當的程序,計算機本身就是有思維的。”(J Searle in Minds Brains and Programs. The Behavioral and Brain Sciences, vol. 3, 1980)這是指使計算機從事智能的活動。在這里智能的涵義是多義的、不確定的,象下面所提到的就是其中的例子。利用計算機解決問題時,必須知道明確的程序。可是,人即使在不清楚程序時,根據發現(heu- ristic)法而設法巧妙地解決了問題的情況是不少的。如識別書寫的文字、圖形、聲音等,所謂認識模型就是一例。再有,能力因學習而得到的提高和歸納推理、依據類推而進行的推理等,也是其例。此外,解決的程序雖然是清楚的,但是實行起來需要很長時間,對于這樣的問題,人能在很短的時間內找出相當好的解決方法,如競技的比賽等就是其例。還有,計算機在沒有給予充分的合乎邏輯的正確信息時,就不能理解它的意義,而人在僅是被給予不充分、不正確的信息的情況下,根據適當的補充信息,也能抓住它的意義。自然語言就是例子。用計算機處理自然語言,稱為自然語言處理。
關于強人工智能的爭論不同于更廣義的一元論和二元論(dualism)的爭論。其爭論要點是:如果一臺機器的唯一工作原理就是對編碼數據進行轉換,那么這臺機器是不是有思維的?希爾勒認為這是不可能的。他舉了個中文房間的例子來說明,如果機器僅僅是對數據進行轉換,而數據本身是對某些事情的一種編碼表現,那么在不理解這一編碼和這實際事情之間的對應關系的前提下,機器不可能對其處理的數據有任何理解。基于這一論點,希爾勒認為即使有機器通過了圖靈測試,也不一定說明機器就真的像人一樣有思維和意識。
也有哲學家持不同的觀點。Daniel C. Dennett 在其著作 Consciousness Explained 里認為,人也不過是一臺有靈魂的機器而已,為什么我們認為人可以有智能而普通機器就不能呢?他認為像上述的數據轉換機器是有可能有思維和意識的。
有的哲學家認為如果弱人工智能是可實現的,那么強人工智能也是可實現的。比如Simon Blackburn在其哲學入門教材 Think 里說道,一個人的看起來是“智能”的行動并不能真正說明這個人就真的是智能的。我永遠不可能知道另一個人是否真的像我一樣是智能的,還是說她/他僅僅是看起來是智能的。基于這個論點,既然弱人工智能認為可以令機器看起來像是智能的,那就不能完全否定這機器是真的有智能的。Blackburn 認為這是一個主觀認定的問題。
需要要指出的是,弱人工智能并非和強人工智能完全對立,也就是說,即使強人工智能是可能的,弱人工智能仍然是有意義的。至少,今日的計算機能做的事,像算術運算等,在百多年前是被認為很需要智能的。
相關著作
《視讀人工智能》:機器真的可以思考嗎?人的思維只是一個復雜的計算機程序嗎?本書著眼于人工智能這個有史以來最為棘手的科學問題之一,集中探討了其背后的一些主要話題。人工智能不僅僅是一個虛構的概念。人類對智能機體結構半個世紀的研究表明:機器可以打敗人類最偉大的棋手,類人機器人可以走路并且能和人類進行互動。盡管早就有宣言稱智能機器指目可待,但此方面的進展卻緩慢而艱難。意識和環境是困擾研究的兩大難題。我們到底應該怎樣去制造智能機器呢?它應該像大腦一樣運轉?它是否需要軀體?從圖靈影響深遠的奠基性研究到機器人和新人工智能的飛躍,本書圖文并茂地將人工智能在過去半個世紀的發展清晰地呈現在讀者面前。
《人工智能的未來》:詮釋了智能的內涵,闡述了大腦工作的原理,并告訴我們如何才能制造出真正意義上的智能機器——這樣的智能機器將不再僅僅是對人類大腦的簡單模仿,它們的智能在許多方面會遠遠超過人腦。霍金斯認為,從人工智能到神經網絡,早先復制人類智能的努力無一成功,究其原因,都是由于人們并未真正了解智能的內涵和人類大腦。所謂智能,就是人腦比較過去、預測未來的能力。大腦不是計算機,不會亦步亦趨、按部就班地根據輸入產生輸出。大腦是一個龐大的記憶系統,它儲存著在某種程度上反映世界真實結構的經驗,能夠記憶事件的前后順序及其相互關系,并依據記憶做出預測。形成智能、感覺、創造力以及知覺等基礎的,就是大腦的記憶-預測系統……
《人工智能哲學》:人工智能哲學是伴隨現代信息理論和計算機技術發展起來的一個哲學分支。本書收集了人工智能研究領域著名學者的十五篇代表性論文,這些論文為計算機科學的發展和人工智能哲學的建立作出了開創性的貢獻。這些文章總結了人工智能發展的歷程,近年來該學科發展的趨勢,以及人工智能中的重要課題。在這些劃時代的著作中,包括有:現代計算機理論之父艾倫·圖靈的“計算機與智能”;著名美國哲學家塞爾的“心靈,大腦與程序”;J·E·欣頓等人的“分布式表述”,以及本書編者、英國著名人工智能學者M·A·博登的“逃出中文屋”。
《人工智能:一種現代的方法》:本書以詳盡和豐富的資料,從理性智能體的角度,全面闡述了人工智能領域的核心內容,并深入介紹了各個主要的研究方向,是一本難得的綜合性教材。全書分為八大部分:第一部分"人工智能",第二部分"問題求解",第三部分"知識與推理",第四部分"規劃",第五部分"不確定知識與推理",第六部分"學習",第七部分"通訊、感知與行動",第八部分"結論"。 本書既詳細介紹了大量的基本概念、思想和算法,也描述了各研究方向最前沿的進展,同時收集整理了詳實的歷史文獻與事件。因此本書適合于不同層次和領域的研究人員及學生,可以作為信息領域和相關領域的高等院校本科生和研究生的教材或教學輔導書目,也可以作為相關領域的科研與工程技術人員的參考書。
Badming代碼
下面是Badming寫的一些關于AI的c++代碼,badming認為當代碼復雜到一定程度,程序給人類的反應,人類已經分不清是不是死的代碼或是真的有意識產生了。下面的代碼實際是簡單腳本的處理代碼。Badming認為,現代的腳本語言實際上是未來Ai的前身。
#include
#include
#include
#include
中文名 人工智能
片 名 AI( Artificial Intelligence)
年 代 2001
國 家 美國
類 別 劇情/科幻/冒險
語 言 英語 漢語普通話
片 長 146 Mins
導 演 史蒂文·斯皮爾伯格 Steven Spielberg
主 演 裘德·洛 Jude Law .... Gigolo Joe
海利·喬·奧斯蒙特 Haley Joel Osment
威廉·赫特 William Hurt .... Prof. Hobby (the Visionary)
梅麗爾·斯特里普 Meryl Streep .... Blue Mecha (voice)
本·金斯利 Ben Kingsley .... Specialist (voice)
克里斯·羅克 Chris Rock .... Comedian (voice)
阿德里安.格蘭尼 Adrian Grenier .... Teen in van
海利·喬·奧斯蒙特 Haley Joel Osment .... David
亞當·亞里克斯·馬里 Adam Alexi-Malle .... Crowd member
Jack Angel .... Teddy (voice)
Clara Bellar .... FemMecha nanny
Keith Campbell .... Roadworker
戴夫·切斯 Daveigh Chase .... Child singer
Clark Gregg .... Supernerd
恩里克·克蘭東尼 Enrico Colantoni .... The Murderer
劇情簡介
21世紀中期,由于氣候變暖,南北兩極冰蓋的融化,地球上很多城市都被淹沒在了一片汪洋之中。此時,人類的科學技術已經達到了相當高的水平,人工智能機器人就是人類發明出來的用以應對惡劣自然環境的科技手段之一。
先進的人工智能機器人不但擁有可以亂真的人類外表,而且還能像人類一樣感知自己的存在。大衛(海利·喬·奧斯蒙特)就是這樣一個有思想、有感情的小機器人,他被一對人類父母所收養,有一個哥哥和一個貼身的伙伴——機器泰德熊。但這些并不能讓大衛滿足,他一直渴望著自己終有一天不再僅僅是個機器人。抱著對這個愿望的執著,11歲的大衛踏上了漫長的心路歷程,跟隨在他身邊的,還有另一個善良的機器人喬(裘德·洛)。誰也不知道他們能否完成自己的心愿,脫胎換骨成為真正的人,等待他們的只有兇吉難料的對復雜人性的追尋……
獲獎情況
奧斯卡獎/Academy Awards, USA 2002 最佳效果(視效及其他) / Best Effects, Visual Effects 提名 Dennis Muren
奧斯卡獎/Academy Awards, USA 2002 最佳效果(視效及其他) / Best Effects, Visual Effects 提名 Scott Farrar
奧斯卡獎/Academy Awards, USA 2002 最佳效果(視效及其他) / Best Effects, Visual Effects 提名 Stan Winston
奧斯卡獎/Academy Awards, USA 2002 最佳效果(視效及其他) / Best Effects, Visual Effects 提名 Michael Lantieri
奧斯卡獎/Academy Awards, USA 2002 最佳音樂/歌曲 / Best Music, Song 提名 約翰.威廉姆斯
金球獎/Golden Globes, USA 2002 最佳男配角 / Best Performance by an Actor in a Supporting Role in a Motion Picture 提名 裘德·洛
金球獎/Golden Globes, USA 2002 最佳導演 / Best Director - Motion Picture 提名 史蒂文·斯皮爾伯格
金球獎/Golden Globes, USA 2002 最佳電影歌曲/音樂 / Best Motion Picture Score 提名 約翰.威廉姆斯
英國學院獎/British Academy Awards 2002 最佳特效 / Best Special Visual Effects 提名 Dennis Muren
英國學院獎/British Academy Awards 2002 最佳特效 / Best Special Visual Effects 提名 Scott Farrar
英國學院獎/British Academy Awards 2002 最佳特效 / Best Special Visual Effects 提名 Michael Lantieri
幕后花絮
淵源——兩位大師的故事
由于《人工智能》一片是斯皮爾伯格繼完成《侏羅紀公園》多年之后重拾科幻片的老本行,并且也是他在《第三類接觸》后又一次自編自導影片,所以該片制作的水準也就可想而知。
本片斥資1億美元,由華納、夢工廠和庫布里克制片公司合作出品,庫布里克的養子也擔任了本片的執行制片人。2000年8月17日,影片在位于加州的華納公司制片廠16號攝影棚開機(16號攝影棚是全世界最大的攝影棚,《完美風暴》一片就是在這里誕生的),整個拍攝過程中,高科技的技術手段再一次大顯其能:工業光魔利用先進的“實時3D電腦游戲引擎”系統事先在電腦中制作了部分影片中的場景,使導演可以隨時根據拍攝需要選擇合適的背景并加入特殊效果;另外,嶄新的“On-Set Visualization”技術還可以實時地在拍攝時將演員和背景合成起來,并把合成的結果顯示到場景中,讓演員們不會因為對著藍色幕布演戲而不知所措。
看來對高科技手段樂此不疲的斯皮爾伯格這次可真是又過了一次特技癮——據小演員奧斯蒙特說,斯皮爾伯格叔叔很會給自己找樂子,《人》片拍攝過程中,攝影棚簡直就是他的一個大型游樂場。難怪我們總能在斯氏的影片中看到那么多自己兒時的夢,其實這位大導演本身就是一個童心未泯的大頑童。
宣傳——“欲擒故縱”的把戲
眾所周知,《人工智能》在整個制作過程中均保持了高度的保密性,再厲害的記者也無法打探到有關劇情或拍攝的任何細節。這種保密程度與當年的《女巫布萊爾》可有一拼,因而《人》片也就格外受到影迷們的關注,網絡上各種與《人》沾邊的消息都成了電影愛好者們瘋狂追逐的對象——這也許正是影片制作者們所要達到的效果吧?“欲擒故縱”的把戲比起花大把的銀子作宣傳來說,可劃算多了。
當然,保密歸保密,“欲擒故縱”還是不能完全替代影片宣傳的。《人》片的宣傳手法可以說也是很討巧的:在電影預告片的末尾,一句猶如謎語一般的話引起了影迷們的極大興趣,要想解開這個謎團,他們必須訪問一系列的網站,然后得到幾個電話號碼和E-mail地址,撥打這些電話號碼并且發信給那些神秘的地址,謎底——也就是《人》片的劇情——就會一點一點地呈現在你的眼前。這種宣傳方法正好投合了影迷們獵奇的心理,達到了非常好的宣傳效果。
幕后
斯皮爾伯格繼承大師庫布里克遺志,拍攝了這部未來派的科幻史詩影片,裘迪勞和第六感小神童奧士文的機器人造型頗為神奇。
故事發生在二十一世紀,地球因溫室效應而令冰山溶化,許多沿海城市被水淹沒,人類只有依靠電腦的人工智能來維持生命,同時人類也應用具有人工智能的機器人作各種不同的用途。在其中的一個家庭,一對人類父母收養了小機器人大衛(凱利祖奧士文)作為他們的兒子,給他真人一樣的生活。而大衛在人類中長大,開始了一段非比尋常的心路歷程… 本片是導演監制于一身的斯皮爾伯格根據電影大師史丹利庫布里克生前所留下的八十頁劇本改編而成的。影片的故事有點兒象童話皮諾曹的現代科幻版,和2年前羅賓威廉斯的《兩百年人》(Bicentennial Man)也有幾分相似。而片名 A.I. 是 Artificial Intelligence 的縮寫,就是人工智能的意思,影片的全名也應該是 A.I.: Artificial Intelligence。
斯皮爾伯格自98年的《拯救大兵瑞恩》后就一直在猶豫他的下一部作品,他手頭的計劃包括《藝妓回憶錄》(Memoirs of a Geisha)、《印第安納瓊斯第四集》(Indiana Jones 4)和《少數派報告》(Minority Report)等。但由于和他有20年交情的庫布里克于1999年突然去世,《大開眼界》(Eyes Wide Shut)在無奈中帶著一絲遺憾成了大師的絕響,而大師生前最后一個計劃也就是本片《A.I.》暫時擱淺,這一突變使得斯皮爾伯格把本片列入了他的計劃之中。
斯皮爾伯格于去年初決定繼《侏羅紀公園》后再度挑戰科幻題材的影片,其中包括向老友致敬的這部《A.I.》和湯姆克魯斯期待多時的《少數派報告》,兩部影片到底誰先勝出一度成了影迷茶余飯后的最佳話題。經過數度周折,斯皮爾伯格最終選擇了這部他從未嘗試過的未來派風格的科幻史詩影片《A.I.》。
人工智能幕后揭秘
1999年,斯坦利庫布里克因為心臟病突發而永遠的離開了他畢生熱愛的電影事業。引用一本雜志的話“我們對這個死去的偉大導師已經說的太多”。這個大師的一生之中,只拍了16部影片,卻部部都是驚世之作,從《2001年太空漫游》到《發條橙》,他老人家的深度和對人類的諷刺實在是讓人佩服。“只有上帝和庫布里克才熱愛人類和詛咒人類——如今這一對老混蛋在天堂又他媽笑了。”
唯獨讓這位大師在天堂仍不得安心的,就是讓他花費了二十多年心血的《AI》,早在1974年,庫布里克就開始構思如何將這個故事拍成電影了。靈感來源于1969年的一部短篇小說《去年夏天的超級玩具》,小說描繪了一個失去關愛的機器男孩和他的玩具泰迪熊的故事。庫布里克在這個故事的基礎上不斷加工潤色甚至還找來幾位小說家一起來合作當故事構思的差不多時,技術的實現問題就擺到了庫布里克面前。以當年的技術水平是很難達到庫布里課的要求的。不是說庫布里克挑剔,之所以稱之為大師,就是因為他對完美的執著追求。別人拍一部電影可以只花幾個月,他卻要耗費三四年。所以《2001年:太空漫游》放在今天看仍然很完美,而別的早期科幻片卻顯得很粗糙,道理就在于此。花在說回來,因為當年技術條件的限制,庫不里克深感難度之大,只好把進展放慢,暫時將影片擱置起來。
一切的改變開始于1993年的《侏羅紀公園》,這部科幻影片獲得了巨大的成功,不僅在票房上,更在于技術上。可以說《侏羅紀公園》是電影數碼技術史上的一個里程碑。庫布里克從那里看到了希望,于是,當年感恩節上他邀請了公司的效果總監丹尼斯·謬倫去他在英國的家做客。飯后庫布里客觀摩了丹尼斯帶來的一些樣片,并一起討論了為該片進行數碼制作的可能性。回到美國后,丹尼斯開始為《AI》設計方案,但庫布里克要求甚高,每個方案他都不會馬上表態。因為庫布里克的這種拖拉作風,一直到他去世,這項工作也未能有所進展。
就在庫布里克去世一年后,華納公司讓史蒂文·斯皮爾博格接手了這部影片。幾十年沒寫過劇本的斯皮爾博格開始為《AI》編寫劇本。這不是華納公司的突發奇想,事實上二十年來庫布里克一直與斯皮爾博格保持著密切的聯系。要說誰是最了解這部影片的人,那么除了庫布里克自己就是斯皮爾博格了。兩年后丹尼斯被請到洛杉磯,會見了斯皮爾博格。在那里丹尼斯驚訝的看到庫布里克為這部影片所準備的各種資料,其中包括請畫家貝克繪制的一千五百多張電影插圖。事實上從丹尼斯1993年同庫布里克第一次會晤開始,庫布里克就為該片投入了大量心血,做了很多的前期工作。說到這1500張插圖,我們還要提一下他們的作者——克里斯·貝克。庫布里克之所以找到貝克是因為被他的一部圖畫書所吸引,庫布里克告訴他大致內容,然后讓貝克自由發揮。就這樣,在兩年半的時間里,兩人雖然身在兩地,但通過電話和傳真機完成了這些驚人的插圖。
正式開始工作后,他的老搭檔斯坦·溫斯頓工作室自然而然的負責起人物造型的任務。當然,最主要的人物就是那些形形色色的機器人了。說到為機器人設計造型,溫斯頓工作室可是有一手的。最經典的造型莫過于當年的《終結者》了。但是這次不同以往,要設計的造型數量巨大,斯坦溫斯頓試圖創造出一個人們從未見過的機器人世界。為此,溫斯頓工作室聘請了超過140位藝術家來加盟這個工程。并且建立了大大小小的車間,這是溫斯頓工作室有史以來搞的最大的一次,人人都是傾力而為之。即便如此,在設計了幾百個方案后,斯皮爾博格居然還是不太滿意,他總是說“哦,他看起來實在太像終結者了。”
當影片轉交到斯皮爾博格的手中,一切關于大衛的問題都不存在了,因為斯皮爾博格使用了真人來扮演這個機器男孩(不愧位大師,偷工減料的本事也是一流的……不知道庫布里克在天之靈會不會被氣的吐血……)。童星海利喬奧斯蒙特出色的完成了這個任務,他在表演的時候居然能幾分中不眨一下眼睛。當然,為了讓他顯得更完美,化妝師們剃光了奧斯蒙特臉上的汗毛,這樣他看起來會更光滑一些。事實上,為了研究出這個效果,化妝師拿其他小孩做了很多試驗,以至于最后半打孩子臉上都是光光的。
影片的主角是機器人男孩大衛,這是一個皮諾曹式的人物,也是讓庫布里克最傷神的角色,早在1994年,庫布里克就開始了一系列試驗,摸索如何在影片中表現這個角色。以庫布里克最初的想法,大衛一定不能用真人來扮演,其中一個原因是因為真小孩兒會長大,而以庫布里克的拖拉作風,估計影片拍完小孩兒也該成人了。同時他也希望這個角色看起來稍微的不同于真人,因為他畢竟是個機器人。所以他讓IML做一個全數碼生成的人物試試,但是效果并不理想。隨后考慮使用玩偶,模型專家以庫布里克五歲的孫子為樣板,制作了玩偶模型,但是這個方案最后也未被采納。也有人建議庫布里克使用真人演出,再加上電腦生成的腦袋,如此種種,但庫布里克始終沒有能夠找到令他滿意的效果。
當斯皮爾博格除了大衛,影片中還出現了各種型號千奇百怪的機器人。制作者們為了影片設計了大約25種機器人。他們各司其職,擺闊請立功,廚師和開罐頭的機器人。斯皮爾博格要求這些機器人看上去更人性化一些,而不是讓觀眾感覺到他們只是一些機器而已。為了讓這些機器人在銀幕上活靈活現,斯坦溫斯頓工作室動用了模型、CG和化妝技術,總而言之,能用的全都用上了。
雖然影片上映后如同所有庫布里克的影片一樣,觀眾反映平平。但相信它會是一部慢熱的作品。在若干年之后,成為又一部偉大的作品。畢竟,它包含了兩位電影大師的心血。以及數百名幕后人員的忘我工作。
非常好我支持^.^
(102) 91.1%
不好我反對
(10) 8.9%
相關閱讀:
- [電子說] 如何創建FPGA控制的機器人手臂 2023-10-24
- [電子說] 怎樣延長半導體元器件的壽命呢? 2023-10-24
- [電子說] 智能時代的三大核心技術 2023-10-24
- [人工智能] 研華推出EPC-B3000系列嵌入式工控機,搭載先進X86架構CPU,助力邊緣人工智能應用 2023-10-24
- [電子說] 探索可觀測性未來:基調聽云產品VP陳靖華揭秘新一代可觀測性工具 2023-10-24
- [電子說] 異構時代:CPU與GPU的發展演變 2023-10-24
- [電子說] RISC-V要顛覆GPU嗎? 2023-10-24
- [電子說] 韓國半導體10月早期出口數據一年來首次回暖,工信部推動通用人工智能與物聯 2023-10-24
( 發表人:admin )