精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

您好,歡迎來電子發(fā)燒友網(wǎng)! ,新用戶?[免費注冊]

您的位置:電子發(fā)燒友網(wǎng)>源碼下載>數(shù)值算法/人工智能>

一種新的自適應提升的概率矩陣分解算法

大小:0.74 MB 人氣: 2017-12-27 需要積分:1

  針對推薦系統(tǒng)中概率矩陣分解模型(PMF)泛化能力(對新用戶和物品的推薦性能)較差、預測準確性不高的問題,提出一種新的基于自適應提升的概率矩陣分解算法AdaBoostPMF)。該算法首先為每個樣本分配樣本權(quán)重;然后根據(jù)PMF中的每一輪隨機梯度下降法學習用戶和物品特征向量,并計算總體預測誤差均值和標準差。從全局的角度利用AdaBoost思想自適應調(diào)整樣本權(quán)重,使算法更注重學習預測誤差較大的樣本;最后對預測誤差分配樣本權(quán)重,讓用戶和物品特征向量找到更合適的優(yōu)化方向。相比傳統(tǒng)的PMF算法,AdaBoostPMF算法能夠?qū)㈩A測精度平均提高約2. 5%。實驗結(jié)果表明,該算法通過加權(quán)預測誤差較大的樣本,能夠較好地擬合用戶特征向量和物品特征向量,提高預測精度,可以有效地應用于研究個性化推薦。

一種新的自適應提升的概率矩陣分解算法

非常好我支持^.^

(0) 0%

不好我反對

(0) 0%

      發(fā)表評論

      用戶評論
      評價:好評中評差評

      發(fā)表評論,獲取積分! 請遵守相關規(guī)定!

      ?