氣體激光器的工作原理
氣體激光器由放電管內的激活氣體、一對反射鏡構成的諧振腔和激勵源等三個主要部分組成。主要激勵方式有電激勵、氣動激勵、光激勵和化學激勵等。其中電激勵方式最常用。在適當放電條件下,利用電子碰撞激發和能量轉移激發等,氣體粒子有選擇性地被激發到某高能級上,從而形成與某低能級間的粒子數反轉,產生受激發射躍遷。氣體激光器一般采用氣體放電激勵,還可以采用電子束激勵、熱激勵、化學反應激勵等方式。
氣體激光器波長覆蓋范圍主要位于真空紫外至遠紅外波段,激光譜線上萬條,具有輸出光束質量高(方向性及單色性好)、連續輸出功率大(如CO2激光器)等輸出特性,其器件結構簡單、造價低廉。
氣體激光器的應用
氣體激光器是利用氣體作為增益介質的激光器,一般是對氣體放電進行泵浦。氣體種類有原子氣體(氦氖激光器、惰性氣體離子激光器、金屬蒸汽激光器)、分子氣體(氮氣激光器、二氧化碳激光器)、準分子氣體,還有通過化學反應提供泵浦能量的特殊氣體激光器。
氦氖氣體激光器(HeNe)是以75%以上的He和15%以下的Ne的混合氣體作為增益介質,根據工作環境不同,可發出綠(543.5nm)、黃(594.1nm)、橙(612.0nm)、紅(632.8nm)及三種近紅外光(1152nm、1523nm和3391nm),其中紅光(632.8nm)最為常用。HeNe氣體激光器輸出的光束呈高斯分布,光束質量非常穩定,雖然功率不高,但在精密測量領域有著不俗的表現。
惰性氣體激光器常見的是氬離子(Ar+)和氪離子(Kr+)。其能量轉化率最高可達0.6%,可長期連續穩定輸出30-50w的功率,壽命超過1000h。主要用于激光顯示、拉曼光譜、全息、非線性光學等研究領域以及醫療診斷、打印分色、計量測定材料加工及信息處理等方面。
金屬蒸汽激光器以銅蒸氣為例。銅蒸氣激光器主要輸出綠光(510.5nm)和黃光(578.2nm),可達到100w的平均功率和100kw的峰值功率。其主要應用領域為染料激光器的泵浦源。此外,還可用于高速閃光照相、大屏幕投影電視及材料加工等。
氮分子激光器以氮氣為增益介質,可發射337.1nm、357.7nm、315.9nm的紫外光,峰值功率可達45kw??勺鳛橛袡C染料激光器的泵浦光源,在激光分離同位素、熒光診斷、超高速攝影、污染檢測以及醫療衛生、農業育種等方面也得到廣泛應用。由于其短波長更易聚焦得到小光斑,因此還可用于加工亞微米量級的元件。
二氧化碳氣體激光器所用的增益介質是混了氦氣和氮氣的二氧化碳,可輸出以9.6μm和10.6μm波長為中心的遠紅外光。二氧化碳氣體激光器的能量轉換率高,輸出功率可從幾瓦到幾萬瓦,加上極高的光束質量,使得二氧化碳氣體激光器在材料加工、科研、國防及醫學方面均有著廣泛應用。
準分子是不穩定的分子,在諧振腔內充入不同稀有氣體和鹵素氣體的混合物而有不同波長的激光產生。常用相對論電子束(能量大于200千電子伏特)或橫向快速脈沖放電來實現激勵。當受激態準分子的不穩定分子鍵斷裂而離解成基態原子時,受激態的能量以激光輻射的形式放出。在醫療、光通信、半導體顯視、遙感、激光武器等領域有著廣泛應用。
化學激光器是一類特殊的氣體激光器,即是一類利用化學反應釋放的能量來實現粒子數反轉的激光器。這類氣體激光器大部分以分子躍遷方式工作,典型波長范圍為近紅外到中紅外譜區。最主要的有氟化氫(HF)和氟化氘(DF)兩種裝置。前者可以在2.6~3.3微米之間輸出15條以上的譜線;后者則約有25條譜線處于3.5~4.2微米之間。這兩種器件目前均可實現數兆瓦的輸出。由于其能量巨大,一般用于核工程及軍事領域。
-
激光器
+關注
關注
17文章
2483瀏覽量
60251 -
氣體激光器
+關注
關注
0文章
9瀏覽量
6655
發布評論請先 登錄
相關推薦
評論