精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

人工智能的兩種最基本搜索算法

汽車玩家 ? 來源:今日頭條 ? 作者:聞數(shù)起舞 ? 2020-05-03 17:45 ? 次閱讀

您所做的任何事情都從搜索開始! 人工智能可以解決這些日常問題。 讓我們了解BFS,DFS等…

縱觀歷史,人類一直在尋找東西。 搜索使我們成為今天的我們。 在遠古時代,覓食者常常尋找生活必需品。 他們創(chuàng)建了一些工具來簡化搜索過程。 人腦也在這個過程中進化。 現(xiàn)在,它可以創(chuàng)建該地區(qū)的思維導圖,而覓食者可以將區(qū)域映射到他們自己的頭腦中,并可以更有效地進行搜索。 即使在現(xiàn)代,我們基本上也使用以前使用的相同策略。 但是現(xiàn)在,我們有了更先進的工具,我們的思想也有了更多發(fā)展。 我們使用地圖來尋找方法,例如Google Maps之類的工具就是我們?nèi)绾伟l(fā)展自己以更高效地進行搜索的最佳示例。

我們在搜索中取得的最重大進步是由于技術(shù)的變化。 在計算機科學中,我們將此術(shù)語稱為算法。 隨著大腦能力的增強,我們創(chuàng)建了更復雜,更高效的算法。 我們開發(fā)了這些解決方案來解決更復雜的問題。 算法可以使我們的生活更簡單,并使我們更高效。 從日常任務到創(chuàng)建世界一流的人工智能,搜索算法都是所有人類工作的基礎。 在此博客中,我們將看到兩種最基本的搜索算法,它們將為我們對更復雜算法的理解奠定基礎。

不要讓這種解釋變得平淡無奇。 我們將以真實生活(LoL)為例來了解搜索本身的發(fā)展。 好的(?)

因此,顯然我有一個女友麗莎(至少在我的想象中)。 她對所有使用的東西都很聰明,而且非常挑剔。 前幾天,她在某處丟了口紅。 這是她最喜歡的陰影。 就像我說的她非常挑剔一樣,她不會適應其他陰影或任何其他品牌。 但是問題在于口紅非常稀有,而且嚇壞了。 現(xiàn)在,她計劃購買新的。 我們附近的商店非常寬敞; 如果他們沒有的話,他們會引導她去其他商店。 她可以通過幾種方法開始搜索,讓我們一一理解它們。

廣度優(yōu)先搜索(BFS)

人工智能的兩種最基本搜索算法

> fig 1. Step 1 in BFS

麗莎是一個有組織的女孩。 另外,知道她家附近的一些美容店。 她在紙上列出了他們的名字。 假設有一些商店A,商店B和商店C。她將在列表中輸入商店的名稱,并從上至下從A商店開始依次訪問A。!,A商店 沒有那種陰影,但他們建議她在其他商店購買。 她將這些名字列為Shop D和ShopE。她將緊隨其后。 下一站,商店B。他們又沒有了,但他們建議她去其他商店。 她也列出了它們,分別在F商店和G商店。接著,在C商店。現(xiàn)在她去了C商店。他們也沒有,但是他們不能向她推薦任何商店。 最后,Lisa的清單如下所示。

人工智能的兩種最基本搜索算法

> fig 2. Step 2 in BFS

下一步,她將參觀商店A所有者建議的商店D。 如果他們沒有,他們也會建議她去其他商店。 她將這些商店添加到列表中,并繼續(xù)按順序逐個訪問商店,直到找到那該死的口紅。 她成功了。 她在商店G的老板建議的一家商店中找到了它。 那就是J店。讓我們畫一張她去過的所有這些商店的地圖。 兩個商店之間的連接表示該特定商店是另一商店建議的。 用正式術(shù)語來說,我們將此地圖稱為"圖形",在這種情況下,稱為"樹"。

人工智能的兩種最基本搜索算法

> fig 3. BFS MAP (The digits on the lines represents the sequence in which she visited those shops.)

這不是一件容易的事,但她得到了她最喜歡的口紅。 您可以觀察到,Lisa按順序依次去了同一位店主建議的商店。 我們將這種方法稱為廣度優(yōu)先搜索(BFS)算法,因為我們首先搜索先前已知的所有可用選項,并添加新選項以供日后使用。 但是這種方法的問題在于它會產(chǎn)生冗余。 觀察商店K的情況,可以同時從商店F和商店G到達商店。而且她兩次拜訪商店的時間(請考慮自己是啞巴)。 BFS具有此規(guī)則以訪問方式訪問所有節(jié)點。 是否已經(jīng)訪問過它們都沒關(guān)系。

深度優(yōu)先搜索(DFS)

在我們以前的方法中,麗莎不得不走近10家商店才能獲得口紅。 讓我們看看是否可以使Lisa的搜索更加高效。 讓我們嘗試另一種方法。這次,Lisa將以不同于以往的方式列出建議的商店。 這次,當她從某個商店獲得建議時,會將其添加到列表的頂部。 最初的清單將有3家商店,與BFS相同。 參觀商店A后,她的清單如下所示。

人工智能的兩種最基本搜索算法

> fig 4. step 1 in DFS

她將標記已經(jīng)去過的商店。 她將遵循相同的自上而下的方法。 因此,她的下一站將是D商店。她將在頂部添加D商店和E商店。 商店D的老板告訴她去我的商店。她去了那里,但找不到唇膏,而我的老板的商店沒有告訴她任何其他商店。 麗莎參觀了E店上方的所有商店。現(xiàn)在她的清單看起來像這樣。

人工智能的兩種最基本搜索算法

> fig 5. Step 2 in DFS

回到商店A的建議的過程正式稱為回溯。 商店E的所有者會告訴她去商店J(在列表頂部添加)和賓果游戲! 她找到了她最喜歡的口紅。

讓我們再次放置該圖。

人工智能的兩種最基本搜索算法

> fig 6. DFS MAP (The digits on the lines represents the sequence in which she visited those shops.)

麗莎走進了搜索樹的深處,而不是去同一層的商店。 我們稱這種方法為深度優(yōu)先搜索算法。 從圖中可以看出,Lisa只需要拜訪5家商店,比我們的BFS方法要少得多。 因此,可以說我們的DFS方法比BFS更好。 另外,如果她本來要通過商店F訪問商店K,那么她就不會通過商店G訪問它。因為她已經(jīng)標記了它。 因此,通過這種方法,她在那里不會多次訪問同一家商店。

Stack和Queue

讓我們關(guān)注麗莎的清單。 僅通過更改輸入新條目的方式,她就大大改善了搜索范圍。 我們將此列表稱為數(shù)據(jù)結(jié)構(gòu)。 數(shù)據(jù)結(jié)構(gòu)是一種將數(shù)據(jù)存儲在計算機內(nèi)存中某處的方法。 就麗莎而言,她將其存儲在紙上。 但是,對于BFS和DFS,這種數(shù)據(jù)存儲方式是不同的。

在BFS中,她在列表的末尾添加了新元素,并以自上而下的方式遵循了列表。 在之前的列表(即先進先出(FIFO))之后,將訪問在她的列表中新添加的商店。 我們稱這種數(shù)據(jù)結(jié)構(gòu)為隊列。 它的工作原理與我們在機場進行的排隊相同。 第一位客戶首先獲得服務。 在隊列中,從后面添加了新元素,而從前面刪除了舊元素,這正是Lisa在BFS中所做的。

在DFS中,Lisa在列表頂部添加了新元素。 她沒有更改自上而下的順序。 在這種方法中,較新的元素要先訪問較舊的元素,即后進先出(LIFO)。 我們將此數(shù)據(jù)結(jié)構(gòu)稱為堆棧。 在堆棧中,從一端開始添加元素,然后從同一端刪除元素,就麗莎而言,這是她列表的頂部,在那里她添加了新商店并順序訪問了這些商店。

結(jié)論

由于兩個原因,DFS比BFS是更好的算法。

· 它不會在數(shù)據(jù)結(jié)構(gòu)中創(chuàng)建冗余,因此不會訪問已經(jīng)訪問過的同一節(jié)點。

· 它在計算上比BFS更輕松,更高效。

雖然,這兩種算法都存在一些問題。 如果我們有一個包含數(shù)千個節(jié)點(商店)的較大地圖,則這些算法無法高效地找到目標節(jié)點。 看一下DFS映射,如果我們將車間L作為目標節(jié)點,則DFS的性能不會比BFS好得多。 盡管BFS存在搜索所有節(jié)點的問題,但DFS可能會浪費時間在錯誤的方向上進行搜索。

為了解決這些問題,我們有更好的算法,例如AI系統(tǒng)中實際使用的啟發(fā)式算法。 但這是另一天的博客。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 算法
    +關(guān)注

    關(guān)注

    23

    文章

    4600

    瀏覽量

    92647
  • 人工智能
    +關(guān)注

    關(guān)注

    1791

    文章

    46872

    瀏覽量

    237596
收藏 人收藏

    評論

    相關(guān)推薦

    嵌入式和人工智能究竟是什么關(guān)系?

    嵌入式和人工智能究竟是什么關(guān)系? 嵌入式系統(tǒng)是一特殊的系統(tǒng),它通常被嵌入到其他設備或機器中,以實現(xiàn)特定功能。嵌入式系統(tǒng)具有非常強的適應性和靈活性,能夠根據(jù)用戶需求進行定制化設計。它廣泛應用于各種
    發(fā)表于 11-14 16:39

    《AI for Science:人工智能驅(qū)動科學創(chuàng)新》第6章人AI與能源科學讀后感

    了電力的實時平衡和優(yōu)化,有效降低了電網(wǎng)的運行成本和故障率。 此外,書中還討論了人工智能在能源科學研究中的挑戰(zhàn)和機遇。這些挑戰(zhàn)包括數(shù)據(jù)質(zhì)量、算法優(yōu)化、隱私保護等方面,而機遇則體現(xiàn)在技術(shù)創(chuàng)新、產(chǎn)業(yè)升級
    發(fā)表于 10-14 09:27

    AI for Science:人工智能驅(qū)動科學創(chuàng)新》第4章-AI與生命科學讀后感

    很幸運社區(qū)給我一個閱讀此書的機會,感謝平臺。 《AI for Science:人工智能驅(qū)動科學創(chuàng)新》第4章關(guān)于AI與生命科學的部分,為我們揭示了人工智能技術(shù)在生命科學領(lǐng)域中的廣泛應用和深遠影響。在
    發(fā)表于 10-14 09:21

    《AI for Science:人工智能驅(qū)動科學創(chuàng)新》第一章人工智能驅(qū)動的科學創(chuàng)新學習心得

    ,還促進了新理論、新技術(shù)的誕生。 3. 挑戰(zhàn)與機遇并存 盡管人工智能為科學創(chuàng)新帶來了巨大潛力,但第一章也誠實地討論了伴隨而來的挑戰(zhàn)。數(shù)據(jù)隱私、算法偏見、倫理道德等問題不容忽視。如何在利用AI提升科研效率
    發(fā)表于 10-14 09:12

    risc-v在人工智能圖像處理應用前景分析

    RISC-V在人工智能圖像處理領(lǐng)域的應用前景十分廣闊,這主要得益于其開源性、靈活性和低功耗等特點。以下是對RISC-V在人工智能圖像處理應用前景的詳細分析: 一、RISC-V的基本特點 RISC-V
    發(fā)表于 09-28 11:00

    名單公布!【書籍評測活動NO.44】AI for Science:人工智能驅(qū)動科學創(chuàng)新

    大力發(fā)展AI for Science的原因。 第2章從科學研究底層的理論模式與主要困境,以及人工智能三要素(數(shù)據(jù)、算法、算力)出發(fā),對AI for Science的技術(shù)支撐進行解讀。 第3章介紹了在
    發(fā)表于 09-09 13:54

    報名開啟!深圳(國際)通用人工智能大會將啟幕,國內(nèi)外大咖齊聚話AI

    8月28日至30日,2024深圳(國際)通用人工智能大會暨深圳(國際)通用人工智能產(chǎn)業(yè)博覽會將在深圳國際會展中心(寶安)舉辦。大會以“魅力AI·無限未來”為主題,致力于打造全球通用人工智能領(lǐng)域集產(chǎn)品
    發(fā)表于 08-22 15:00

    FPGA在人工智能中的應用有哪些?

    FPGA(現(xiàn)場可編程門陣列)在人工智能領(lǐng)域的應用非常廣泛,主要體現(xiàn)在以下幾個方面: 一、深度學習加速 訓練和推理過程加速:FPGA可以用來加速深度學習的訓練和推理過程。由于其高并行性和低延遲特性
    發(fā)表于 07-29 17:05

    揭秘谷歌搜索算法工作原理,與官方聲明存在矛盾

    有著十多年搜索引擎優(yōu)化經(jīng)驗的蘭德·菲什金,近日透露他收到一份長達2500頁的文件,據(jù)稱這是對谷歌搜索算法工作原理的真實揭示,而非谷歌官方所聲稱的那樣。
    的頭像 發(fā)表于 05-29 16:00 ?574次閱讀

    5G智能物聯(lián)網(wǎng)課程之Aidlux下人工智能開發(fā)(SC171開發(fā)套件V2)

    5G智能物聯(lián)網(wǎng)課程之Aidlux下人工智能開發(fā)(SC171開發(fā)套件V2) 課程類別 課程名稱 視頻課程時長 視頻課程鏈接 課件鏈接 人工智能 參賽基礎知識指引 14分50秒 https
    發(fā)表于 05-10 16:46

    5G智能物聯(lián)網(wǎng)課程之Aidlux下人工智能開發(fā)(SC171開發(fā)套件V1)

    課程類別 課程名稱 視頻課程時長 視頻課程鏈接 課件鏈接 人工智能 參賽基礎知識指引 14分50秒 https://t.elecfans.com/v/25508.html *附件:參賽基礎知識指引
    發(fā)表于 04-01 10:40

    直流斬波電路中最基本兩種電路是什么和什么

    最基本兩種直流斬波電路是托馬斯回路和巴克三極管振蕩器。 托馬斯回路 托馬斯回路是用于將直流電壓削波的一基本直流斬波電路。它包括一個能夠控制開關(guān)狀態(tài)的晶體管、一個電感和一個電容。當晶體管導通時,電流會通
    的頭像 發(fā)表于 03-11 14:36 ?1033次閱讀

    嵌入式人工智能的就業(yè)方向有哪些?

    嵌入式人工智能的就業(yè)方向有哪些? 在新一輪科技革命與產(chǎn)業(yè)變革的時代背景下,嵌入式人工智能成為國家新型基礎建設與傳統(tǒng)產(chǎn)業(yè)升級的核心驅(qū)動力。同時在此背景驅(qū)動下,眾多名企也紛紛在嵌入式人工智能領(lǐng)域布局
    發(fā)表于 02-26 10:17

    生成式人工智能和感知式人工智能的區(qū)別

    生成式人工智能和感知式人工智能人工智能領(lǐng)域中兩種重要的研究方向。本文將探討這兩種人工智能的區(qū)別。 生成式
    的頭像 發(fā)表于 02-19 16:43 ?1545次閱讀

    深度學習在人工智能中的 8 常見應用

    深度學習簡介深度學習是人工智能(AI)的一個分支,它教神經(jīng)網(wǎng)絡學習和推理。近年來,它解決復雜問題并在各個領(lǐng)域提供尖端性能的能力引起了極大的興趣和吸引力。深度學習算法通過允許機器處理和理解大量數(shù)據(jù)
    的頭像 發(fā)表于 12-01 08:27 ?3239次閱讀
    深度學習在<b class='flag-5'>人工智能</b>中的 8 <b class='flag-5'>種</b>常見應用