光合作用是指綠色植物(包括藻類)利用光能,把二氧化碳和水合成有機物,并釋放氧氣的過程。光合作用是地球上最重要的化學反應,對維持大氣的碳-氧平衡具有重要意義,同時也為地球上的生命直接或間接地提供了生存需要的物質和能量。
人工光合作用(Artificial Photosynthesis)是模仿植物光合作用實現對太陽能的轉化、存儲和利用。目前正在利用的風能和太陽能是重要的清潔能源,但它們重要的缺點是能量密度不夠,并且這些可再生能源不夠穩定,需要大量專業蓄電設備,而人工光合系統可以直接用有機物來儲存能量,可以克服這些問題。因此,人工光合被認為是應對全球能源挑戰的重要途徑。
經過200多年的研究,光合作用過程和相關機理已經非常清晰。近年來,得益于科技技術的進步,人工光合作用發展迅速,重要研究成果不斷涌現。從2003年美國啟動“太陽神計劃”,用半導體制成光化學二極管加上不同的催化劑,實現太陽能的吸收,把二氧化碳和水變成我們需要的化合物,到2014年第一個人工光合作用集成系統誕生,再到近幾年的光合酶與人工合成的納米材料結合實現太陽能的轉化,都為人工光合系統的構建和利用奠定了重要基礎。
綠色植物的葉綠體是發生光反應和暗反應的重要場所。光反應將光能轉化為化學能,產生了兩種重要的能量載體,即三磷酸腺苷和還原態磷酸二核苷酸煙酰胺(NADPH)。而暗反應則利用這兩種高能分子驅動CO2分子的捕獲,進而合成生物質分子。總之,葉綠體既是光能轉化為化學能的場所,又是CO2固定及轉化的場所。這種一體化的結構,值得人工光合作用領域的研究者們模仿和借鑒。
近日,德國馬克斯-普朗克陸地微生物研究所的Tobias J. Erb和法國波爾多大學的Jean-Christophe Baret(共同通訊作者)等利用微流體體系模擬植物的葉綠體,即利用菠菜的類囊體薄膜實現光反應,并驅動合成酶循環過程,在細胞尺寸的油包水液滴中實現了CO2固定和光合成反應。
這些與葉綠體相仿的液滴在較小的空間內把天然組分和合成組分結合起來,通過進一步功能化,能夠為復雜的生物合成反應提供場所。
在光照下,液滴中的酶或酶級聯放大系統被光能轉化得到的化學能所驅動。研究者從多個方面實時研究了該過程的催化性能。
通過NADPH熒光實時監測新陳代謝的反應活性,該研究發現:通過改變微流體液滴的成分,能調控其在光合成反應中的性質。此外,光照也是一種重要的外界因變量。
該工作通過構筑巴豆酰基-輔酶A (CoA)/乙基丙二酰-CoA/羥基丁酸酰基-CoA (CETCH)的循環,充分證明將天然組分和人造組分結合起來形成類似于葉綠體的復合物,能夠實現CO2的捕獲和轉化,使碳循環的整合向前邁進了重要的一步。
該工作以“Light-poweredCO2fixation in a chloroplast mimic with natural and synthetic parts”為標題于2020年5月8日發表在國際頂刊Science上。
-
光合作用
+關注
關注
0文章
18瀏覽量
9779 -
微流體
+關注
關注
0文章
33瀏覽量
8546
原文標題:合成生物學取得重大進展,科學家構建出仿葉綠體微流體液滴
文章出處:【微信號:MEMSensor,微信公眾號:MEMS】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論