精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

去噪效果對比的主觀表現(xiàn)

lhl545545 ? 來源:集成電路應用雜志 ? 作者:集成電路應用雜志 ? 2020-06-16 11:03 ? 次閱讀

一種基于 Bayer 型圖像數(shù)據(jù)的自適應非局部均值濾波算法

針對非局部均值降噪算法在 Bayer 型圖像數(shù)據(jù)上的應用優(yōu)化,提出一種自適應平滑系數(shù)優(yōu)化算法?;诋斍熬植烤讲钜约熬档谋戎荡_定噪聲系數(shù),根據(jù)噪聲系數(shù)確定劃分區(qū)域,自適應調(diào)整非局部均值降噪的平滑系數(shù),提高紋理區(qū)域的細節(jié)表現(xiàn)。同時融合 LOG 變換之后的降噪優(yōu)化數(shù)據(jù),提高圖像中暗部區(qū)域的降噪表現(xiàn)。此優(yōu)化算法較傳統(tǒng)的非局部均值算法在主觀體驗上有較大的改善。

一種基于Bayer型圖像數(shù)據(jù)的自適應非局部均值濾波算法。集成電路應用, 2020, 37(04): 13-15.

An Adaptive Non-local Mean Filtering Algorithm

Based on Bayer Image Data

WANG Yong, LI Yunsheng

Abstract — In order to optimize the application of non-local means denoising algorithm in Bayer image data, propose an adaptive smoothing coefficient optimization algorithm.Based on the ratio of the local mean square deviation and the mean value to determine the noise coefficient and the partition area determined by the noise coefficient, the smoothing coefficient of non-local mean noise reduction is adaptively adjusted to improve the detail performance of the texture region.At the same time, the optimized data of noise reduction after log transform is fused to improve the performance of noise reduction in the dark area of the image.Compared with the traditional non-local mean algorithm, this optimization algorithm has a greater improvement in subjective experience.

Index Terms — image denoising, bayer image data, non-local mean, adaptive.

圖像降噪技術是數(shù)字圖像處理領域的基礎技術之一。在整個圖像信號處理(Image Signal Processing,ISP)流程中,在后端處理降噪,圖像噪聲的性質(zhì)會變得更加復雜,增加更多的結構性、彩色噪聲以及給噪聲帶來非線性的變化,所以越來越傾向于在 ISP 前端進行降噪處理。經(jīng)典的降噪方法包含:均值濾波、中值濾波、高斯濾波、維納濾波等,傳統(tǒng)的空域去噪算法是基于單個像素的相似性例如雙邊濾波,不能很好地保留邊緣和紋理細節(jié),后來 2005 年 Buades 等根據(jù)圖像局部的相似性,提出了 NLM 降噪算法(Non-local Means Denoising Algorithm),相對于單個像素更好的表達了圖像的結構。之后學者們還有提出基于圖像塊的相似性匹配然后進行 3D 濾波概念的 BM3D 算法(Block-Matching and 3D filtering),但是由于 BM3D 算法所需要的資源特別龐大,在實時處理上會有一定的難度,所以在視頻流的 Bayer 型圖像數(shù)據(jù)降噪處理上還是以 NLM 算法為主。

NLM 算法雖然取得了不錯的降噪效果,但是在參數(shù)h的設定上不明確,當噪聲水平較強時,對于同一參數(shù) h 可能會存在某些部分過于模糊的情況,對于 ISP 后期的處理帶來不便。本文根據(jù)圖像局部的噪聲系數(shù),并結合噪聲域非局部均值算法中濾波參數(shù)的關系,自適應地獲取濾波參數(shù),同時與 LOG 域算法相結合,提高了算法效果。

1 非局部圖像算法

假定噪聲圖像為式(1)。

F={ F(i)│i∈A } (1)

其中,A 為區(qū)域,F(xiàn)(i)為當前圖像的像素值,f(i)為濾波后的像素值,NLM 算法表示為式(2)~式(4)。

其中,a 為高斯核函數(shù)的標準差;N(i)為以 i 為中心的圖像;d(i,j) 為以 i 為中心和以 j 為中心兩個圖像塊的相似距離,一般是表示為歐氏距離;w(i,j) 為兩個圖像塊之間的融合權重,表示兩個圖像塊之間的相似程度;I 代表以 i 為中心的搜索范圍; h 為平滑參數(shù),控制降噪程度的系數(shù);h 越大,越平滑。

2 改進的非局部均值濾波算法

針對非局部均值濾波算法的不足,本文提出一種自適應的且與 LOG 域算法相結合的非局部均值濾波算法。首先圖像轉(zhuǎn)化為 LOG 域,根據(jù)搜索框內(nèi)的局部方差判斷出原始圖像以及 LOG 變換后圖像的降噪系數(shù)h的選擇范圍,同時對 h 有所限制。然后調(diào)整完之后根據(jù)降噪的平滑程度來進行原始圖像降噪以及 LOG 變換后降噪的權重融合,此方法能夠有效地改善圖像質(zhì)量。

2.1 LOG 變換

LOG 變換主要用于將圖像的低灰度值部分擴展,將其高灰度值部分壓縮,以達到強調(diào)圖像低灰度部分的目的,如式(5)。

s=log(1+F(i))/z(5)

這里的 F(i) 代表的是 Bayer 型圖像數(shù)據(jù)的像素值,如果是 12 bit 像素位寬,則 F(i)∈[0,4 095];z 是歸一化系數(shù),對于 12 bit 數(shù)據(jù),z 的值為8.3178。

將原始 Bayer 型圖像 LOG 變換之后能夠凸顯暗部的噪聲,再進行降噪處理后,與原始 Bayer 型圖像融合的同時能夠兼顧暗部的噪聲水平以及紋理表現(xiàn)。

2.2 平滑參數(shù)h的自適應變化

平滑參數(shù)的自適應變化主要依據(jù)局部的噪聲系數(shù)來確定。

局部的噪聲系數(shù)主要是依靠局部的均方差與均值的比值確定,注意局部評估是不區(qū)分 Bayer R/G/B 通道情況,整體評估,如式(6)。

CoefNoise 是噪聲系數(shù),I 是領域搜索框,Num 是搜索框中的參與的數(shù)目個數(shù)。F(j)是位置為 j 的點的像素值,a 是噪聲系數(shù)的調(diào)整幅度。

根據(jù)文獻[6]可以得到平滑系數(shù) h=3.3×σ2,σ是圖像的標準差。在 Bayer 域因為噪聲的表現(xiàn)與圖像的亮度相關,所以 CoefNoise 的大小是用局部的均方差以及亮度均值的比值來確定,劃分出平緩區(qū)域,過渡區(qū)域以及高頻區(qū)域,如式(7)。

sigmaMax 以及 sigmaMin 是給自適應平滑系數(shù)規(guī)定的最大與最小值;sigmaMax 大于等于sigmaMin;sigmaMax 是影響高頻部分清晰度,sigmaMax 增大,高頻部分越平滑;sigmaMin 是影響平坦區(qū)域的降噪程度,sigmaMin 增大,平坦區(qū)域降噪程度越高。當 sigmaMax 以及 sigmaMin 為固定值時,a 影響整體降噪強度,a 增大,高頻區(qū)域增多, a 減小,高頻區(qū)域減少。

2.3 融合系數(shù)

LOG 域變換降噪之后需要與原始 Bayer 型圖像進行融合,由于 LOG 變化之后主要對暗部區(qū)域進行處理,對于亮部區(qū)域的經(jīng)過 LOG 變換之后像素區(qū)域都接近飽和,局部標準差比較小,所以只有 LOG 變換之后只有在條件 CofNoise>beta×sigmaMax 下才進行融合,beta 作為確定暗部區(qū)域的系數(shù),一般選取 0.95。融合過程為式(8)。

其中,output(i) 是輸出像素值,betaMix 是融合系數(shù),一般是 0.5;f(i) 是正常 Bayer 圖像降噪之后的像素值,flog(i) 是經(jīng)過 LOG 變換之后降噪的像素值。

3 實驗結果與分析

實驗過程中,由于考慮到在實際應用上運算量的問題,采用相似窗大小為 9×9,搜索框大小 3×3。實驗中選取的測試圖片為采集得到的真實帶噪聲的 Bayer 數(shù)據(jù)圖片,圖像大小為 496×728。由于 NLM 是業(yè)內(nèi)公認效果較好的降噪算法,所以對比的圖像測試效果是與常規(guī) NLM 以及優(yōu)化后的算法效果對比。

為原始 Bayer 型圖像帶噪聲數(shù)據(jù)與經(jīng)過 Demosaic/AWB/Gamma 之后的 RGB 圖像, 為原始 Bayer 型圖像 GroudTruth 數(shù)據(jù)(不帶噪聲)與 為經(jīng)過Demosaic/AWB/Gamma之后的RGB圖像。為了更直觀地展現(xiàn)效果,接著的圖片是展現(xiàn)經(jīng)過 Demosaic/AWB/Gamma 之后的效果。

3.1 去噪效果對比的主觀表現(xiàn)

為場景一的主觀效果圖, 為場景二的主觀效果圖。優(yōu)化后的算法較之前常規(guī) NLM 的算法有較好的視覺效果,在暗部區(qū)域以及紋理區(qū)域能夠較好地保持細節(jié),為了能夠更好地展示效果,以及 把局部細節(jié)放大后顯示。

由于優(yōu)化后的算法根據(jù)局部的噪聲系數(shù)確定不同區(qū)間的平滑參數(shù),通過最小噪聲系數(shù)限制平滑區(qū)域的降噪強度,避免平滑區(qū)域雖然噪聲較多,但是噪聲系數(shù)仍然較低降噪不完全的情況;通過最大噪聲系數(shù)限制強邊緣區(qū)域的降噪強度,避免強邊緣區(qū)域降噪強度過高,過渡區(qū)域(最小噪聲系數(shù)和最大噪聲系數(shù)之間)能夠自適應調(diào)節(jié)平滑系數(shù)。同時由于 Bayer 數(shù)據(jù)像素亮度較低,通過 LOG 變換后的降噪處理與變換前的降噪處理數(shù)據(jù)融合,能夠優(yōu)化暗部區(qū)域的噪聲水平,為后端的 Gamma 變換/色調(diào)映射等算法提供支持。從以及 可以看出平坦區(qū)域和強邊緣區(qū)域基本保持一致,從 中能夠明顯看出細節(jié)部分有明顯的增強,符合在 Bayer 型圖像數(shù)據(jù)降噪的時候保持住足夠的紋理信息,為后端算法處理留有空間的目的。

3.2 去噪效果對比的數(shù)據(jù)表現(xiàn)(峰值信噪比 PSNR 與信噪比 SNR)

為了進一步確認優(yōu)化后算法優(yōu)勢,本文增加兩組數(shù)據(jù)的峰值信噪比(PSNR)和信噪比(SNR)對比來說明去噪效果,即采集同一場景的 60 幀數(shù)據(jù),取平均合成了 GroundTruth 圖片作為無噪聲圖像,進行對比。

可以看出,優(yōu)化后的算法在 PSNR、SNR 上都優(yōu)于經(jīng)典的 NLM 算法。由于主要的優(yōu)化區(qū)域是噪聲系數(shù)過渡區(qū)域(最小噪聲系數(shù)和最大噪聲系數(shù)之間)以及暗部區(qū)域,SNR 以及 PSNR 是整幅圖像對比計算,所以在主觀上有明顯優(yōu)化,但是從 SNR 以及 PSNR 的數(shù)值上不是很明顯。

4 結語

本文提出對于 Bayer 型圖像數(shù)據(jù) NLM 降噪算法優(yōu)化方法,將原來固定的平滑系數(shù)值自適應化,結合局部的均方差以及亮度信息,以及 LOG 變換之后對于暗部區(qū)域的調(diào)整,能夠在原有 NLM 算法基礎上提高細節(jié)結構的表現(xiàn)。通過根據(jù)真實噪聲的降噪效果展示,優(yōu)化后的 NLM 降噪算法在細節(jié)紋理上有明顯的提升。
責任編輯:pj

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 數(shù)據(jù)

    關注

    8

    文章

    6892

    瀏覽量

    88828
  • 圖像降噪
    +關注

    關注

    0

    文章

    7

    瀏覽量

    6680
  • Bayer圖像
    +關注

    關注

    0

    文章

    2

    瀏覽量

    6050
收藏 人收藏

    評論

    相關推薦

    求助,請問TLV320AIC3254是否有這樣的抗效果?

    請問TLV320AIC3254是否有網(wǎng)上:(http://www.ti.com.cn/lsds/ti_zh/analog/audio/tools_tab.page)這樣的抗效果?如果有8位MCU驅(qū)動能得到一樣的效果嗎?
    發(fā)表于 10-31 06:13

    AIC3104環(huán)境底是要通過設置寄存器的參數(shù)來消除嗎?

    AIC3104如果關掉AGC,PGA設置為0,無環(huán)境底,聲音聽起來不錯,但是靈敏度很差,必須嘴對著MIC說話才有很好的效果,PGA設置越高,環(huán)境底就越大。 如果開啟AGC,PGA設置為0,無論
    發(fā)表于 10-23 06:17

    tlv320aic3106底過大要如何解決?

    輸入(斷開電路),依然有比較大的底,初步確定為3106本身存在底, 錄音文件見附件, 請問要怎么消除或者降低這個底?
    發(fā)表于 10-12 08:23

    運放的反饋電阻習慣性并聯(lián)上一個反饋電容,主要目的就是,為什么會起到這種作用?

    菜鳥請教:運放的反饋電阻習慣性并聯(lián)上一個反饋電容,主要目的就是,為什么會起到這種作用?特別是如何計算其電容值得大小?有什么書可以推薦的。謝謝。
    發(fā)表于 08-29 07:53

    PGA280底很大是為什么?

    我用PGA280+AD7765進行信號采集。 發(fā)現(xiàn)只有AD7765輸入端短接,底很低。但是PGA280+AD7765一起測試,輸入端短接的時候底很高,請問是為什么啊。 下面是原理圖。
    發(fā)表于 08-09 07:27

    頻譜儀測載比怎么測

    頻譜儀測量載比(Carrier to Noise Ratio, CNR)是一種評估無線通信系統(tǒng)性能的重要指標。載比是指信號功率與噪聲功率的比值,通常用分貝(dB)表示。在無線通信系統(tǒng)中,較高
    的頭像 發(fā)表于 06-03 10:13 ?1089次閱讀

    示波器如何測量底?示波器測量底的步驟

    ,也稱為背景噪聲,是指在沒有輸入信號時示波器屏幕上顯示的隨機波動。測量底對于評估示波器的性能和確定測量系統(tǒng)的噪聲水平非常重要。
    的頭像 發(fā)表于 05-30 16:38 ?1479次閱讀

    比和信噪比有什么區(qū)別

    比就是載波功率和噪聲的比值,它是描述接收載波強度和接收噪聲強度的一個量,如下圖所示。通常載比越高,通信質(zhì)量越好,并且接收機具有更好的通信穩(wěn)定性和可靠性。
    發(fā)表于 03-29 10:51 ?3233次閱讀
    載<b class='flag-5'>噪</b>比和信噪比有什么區(qū)別

    耦電容越大越好嗎,耦電容值的選擇

    低通濾波器;二是蓄能作用,在有源器件開關的時候電流的急劇變化可能不能及時供給,此時該電容就可以起到供給電流的作用。在數(shù)字電路中,典型的耦電容值是0.1μF,對于10MHz以下的噪聲有較好的效果。在實際應用中,需要根據(jù)實際情
    的頭像 發(fā)表于 02-10 14:57 ?2310次閱讀

    汽車RNC路主動降噪測試

    本文主要內(nèi)容:RNC路主動降噪概述、RNC路主動降噪測試配置、RNC路主動降噪測試架構
    的頭像 發(fā)表于 01-10 14:20 ?1742次閱讀
    汽車RNC路<b class='flag-5'>噪</b>主動降噪測試

    近期上市新機的信號測量和性能表現(xiàn)對比

    近期各品牌新機陸續(xù)上市,發(fā)燒友們是不是很想了解它們的性能表現(xiàn)呢?
    的頭像 發(fā)表于 01-02 10:42 ?1529次閱讀
    近期上市新機的信號測量和性能<b class='flag-5'>表現(xiàn)</b><b class='flag-5'>對比</b>

    請問ADC芯片如何降低底?

    為什么經(jīng)過ADC采樣后,我用matlab仿真后,底在-100左右,而ADC芯片資料上都在-120左右,請問如何降低ADC的底?
    發(fā)表于 12-12 06:56

    LED貼膜屏的亮度、對比度和色彩表現(xiàn)力怎么樣?

    LED貼膜屏的亮度、對比度和色彩表現(xiàn)力怎么樣? LED貼膜屏作為一種新型的顯示技術,具有許多優(yōu)勢,其中包括亮度、對比度和色彩表現(xiàn)力。 首先,LED貼膜屏的亮度非常高,這意味著它可以在各
    的頭像 發(fā)表于 12-11 13:43 ?625次閱讀

    一般汽車應用中的底主要產(chǎn)生源是什么?降低這些底有啥方法?

    用于汽車音頻系統(tǒng)設計,經(jīng)常會出現(xiàn)底太大,產(chǎn)生人耳在安靜的環(huán)境下就能感受到的雜聲,能不能以反傾銷 1401為例幫分析下我們一般汽車應用中這種底主要產(chǎn)生源?降低這些底有啥一般有效的方法?例如結合吉瑪斯圖軟件算法的一些建議啥的。
    發(fā)表于 11-29 07:51

    ad8376將底抬高如何解決?

    ad8376將底抬高!如何解決!
    發(fā)表于 11-27 08:00