高性能超聲成像系統廣泛應用于各種醫學場景。在過去十年中,超聲系統中的分立電路已經被高度集成的芯片(IC)所取代。先進的半導體技術不斷推動系統性能優化及尺寸小型化。這些變革都得益于各類芯片技術,如專用低噪聲放大器、多通道低功耗ADC、集成高壓發射、優化的硅工藝和多芯片模塊封裝。隨著芯片功耗和尺寸減小至原來的20%,。此外,得益于低功耗、高性能硅工藝的發展,部分波束合成預處理模塊已經集成于通用的模擬或混合信號芯片而非專用的數字處理器。同時,先進的高速串行或是無線接口大大降低了系統布局復雜度,并且能夠將盡可能多的RF數據轉移到系統集成芯片(SOC)、CPU或GPU。當前超聲技術的應用也從特定的放射學診斷擴展到各類便攜式應用,床旁實時監測以及醫療現場就地檢查等各個領域。
本應用指南綜述了超聲系統的架構和原理,分析了系統設計的注意事項,綜述了應用于超聲芯片的先進技術,最后講解了醫學超聲芯片的模擬參數。
1.醫學超聲成像
超聲波是一種頻率高于20KHz的聲波。醫學超聲成像系統常采用1 MHz至20 MHz的頻率,可達到亞毫米級分辨率。第一臺商用超聲成像系統誕生于20世紀70年代,可提供實時的2D亮度或灰度圖像。如今,超聲成像憑借安全性、成本效益和實時方面的優勢,已經成為重要的醫學成像技術。醫學超聲系統能夠有效地監測嬰兒發育,也可用于診斷心臟、肝臟、膽囊、脾臟、胰腺、腎臟、膀胱等內臟器官的疾病。
典型的超聲系統包括壓電換能器、電子電路、圖像顯示單元和DICOM(醫學數字成像和通信)兼容軟件。
2.聲波產生和傳播的原理
超聲換能器是超聲系統的關鍵組成部分,由壓電元件、連接器和支撐結構組成。壓電效應是指某種材料的物理尺寸隨施加的電場而變化的現象,反之亦然。如下所示,超聲應用中的大多數換能器是雙共模式。換能器在發射相(模式)期間將電能轉換成機械能。產生的機械波向介質傳播,若介質不均勻則會反射。在接收模式中,接收反射的機械波形并由換能器轉換成電信號。
在換能器被電子激勵之后,會產生聲波并在介質中傳播。在醫學超聲中,FDA(食品藥品管理局)要求所有成像系統滿足瞬時、峰值和平均強度的限制。
我們通常將換能器靈敏度或換能器插入損耗(IL)定義為接收(Rx)和發射(Tx)信號幅度之間的比率,如下所示:
換能器頻率由壓電材料L的厚度和材料中的聲速cm決定:
如前所述,常用的頻率范圍為1MHz至20MHz?;谏鲜龇匠淌剑^高頻率的換能器需要較薄的材料。因此,構建極高頻的換能器具有一定的挑戰性。
換能器頻率響應或帶寬是另一個關鍵參數。作為一般規則,若換能器被脈沖信號(即短尖峰)激勵,則接收回波的持續時間決定了換能器的帶寬。具有極快響應(即短回波)的換能器是寬帶換能器,反之亦然。在大多數應用中通常優選更寬的帶寬。在相同的換能器頻率下,寬帶換能器可實現更好的軸向分辨率,因為回波長度決定了超聲系統的軸向分辨率。與此同時,寬帶換能器適用于諧波成像,在該成像模式下超聲能量以基頻發射,而圖像由接收到回波的二次諧波來重建。如沒有寬帶寬換能器的情況下,換能器靈敏度在其諧波頻率點2f0處顯著下降。因此許多換能器研究人員不斷探索新材料、新架構和新制造工藝以進一步改善換能器性能。
在超聲成像的早期階段,用于超聲系統的多通道電子電路既昂貴又不成熟。由電機驅動通過機械掃描方式成像單陣元換能器被廣泛用于獲得二維(2D)圖像。由于機械結構的速度和精度限制,早期系統無法實現高幀率或高精度成像。如今,成熟的陣列換能器和多通道電子技術可支持64到512個陣元的換能器。以電子掃描為基礎可獲得高達> 100幀/秒的圖像。為實現電子掃描,波束合成技術應用于聚焦換能器的聲束。波束合成的細節將在下一節中討論。與光學成像系統類似,超聲系統可在聚焦焦點處實現最佳空間分辨率。根據應用,一維(1D)陣列換能器包括線性陣列、彎曲線性陣列和相位陣列。這些換能器之間的主要區別在于光束成形結構、成像范圍和圖像分辨率。此外,由超過2000個元件組成的最新2D陣列換能器可支持實時三維(3D)成像。
審核編輯 黃昊宇
-
信號鏈
+關注
關注
0文章
200瀏覽量
29803 -
超聲系統
+關注
關注
1文章
25瀏覽量
11238
發布評論請先 登錄
相關推薦
評論