精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

功率轉換器中CoolSiC?MOSFET技術解析

電子設計 ? 來源:powerelectronicsnews ? 作者:Dr.Peter Friedrichs ? 2021-05-20 11:28 ? 次閱讀

功率轉換器中越來越多地使用碳化硅(SiC)晶體管,這對尺寸,重量和/或效率提出了很高的要求。與雙極IGBT器件相反,SiC出色的材料性能使它可以設計快速開關的單極器件。因此,現在僅在低壓環境(<600 V)下才可能使用的解決方案現在也可以在更高的電壓下使用。結果是最高的效率,更高的開關頻率,更少的散熱和節省空間–這些優點反過來又可以導致總體成本降低。

同時,MOSFET已成為公認的選擇概念。最初,JFET結構似乎是合并SiC晶體管的性能和可靠性的最終選擇。然而,利用現在建立的150mm晶圓技術,基于溝槽的SiC MOSFET也變得可行,因此,現在可以解決具有性能或高可靠性的DMOS難題。

SiC簡介

基于寬帶隙的功率器件,例如SiC二極管和晶體管,或GaNHEMT(高電子遷移率晶體管),已成為當今電力電子設計人員中的重要元素。但是,與硅相比,SiC的魅力何在?有什么特點使SiC組件如此誘人,以至于盡管與硅高壓器件相比成本較高,但它們仍被頻繁使用?

在功率轉換系統中,人們一直在努力減少功率轉換期間的能量損失。現代系統基于與無源元件結合使用來打開和關閉固態晶體管的技術。對于與所使用的晶體管有關的損耗,有幾個方面是相關的。一方面,必須考慮傳導階段的損耗。在MOSFET中,它們是由經典電阻定義的。在IGBT中,存在一個固定的傳導損耗確定器,其形式為拐點電壓(Vce_sat)加上輸出特性的差分電阻。通??梢院雎宰枞A段的損失。

但是,在切換過程中,導通狀態和斷開狀態之間始終存在過渡階段。相關的損耗主要由器件的電容來確定。對于IGBT,由于少數載流子動態特性(導通峰值,尾電流),進一步的貢獻到位了。基于這些考慮,人們會期望選擇的器件始終是MOSFET,但是,特別是對于高電壓,硅MOSFET的電阻變得如此之高,以致總損耗平衡不如可以使用電荷調制的IGBT。通過少數載流子來降低導通模式下的電阻。圖1以圖形方式總結了這種情況。

o4YBAGCl1mKAJP_EAAChhQwVlzU257.png
圖1:MOSFET(HV表示與IGBT – 1200 V及更高的阻斷電壓類似)之間的開關過程(左,假設dv / dt相同)和靜態IV行為(右)的比較

當考慮寬帶隙半導體時,情況會發生變化。圖2總結了SiC和GaN與硅相比最重要的物理性能。重要的是,帶隙與半導體的臨界電場之間存在直接的相關性。就SiC而言,它比硅高約10倍。

pIYBAGCl1m2AT9bAAADZeK38tgQ459.png

圖2:功率半導體材料重要物理性能的比較

借助此功能,高壓設備的設計有所不同。圖3以5 kV半導體器件為例顯示了影響。在硅的情況下,由于中等的內部擊穿電場,人們不得不使用相對較厚的有源區。另外,在有源區中只能摻入少量摻雜劑,從而導致高串聯電阻(如圖1所示)。

o4YBAGCl1niACsuBAAC4cnNLHwI419.png

圖3:5 kV功率器件的尺寸-硅和SiC之間的差異

由于其在SiC中的擊穿場高10倍,因此可以使有源區更薄,同時可以并入更多自由載流子,因此導電率大大提高。可以說,在SiC的情況下,快速開關單極器件(例如MOSFET或肖特基二極管)與較慢的雙極結構(例如IGBT和pn二極管)之間的轉換現在已經轉移到了更高的阻斷電壓(見圖4)?;蛘?,現在,對于1200 V器件,SiC也可以在50 V左右的低壓區域使用硅。

英飛凌在25年前就發現了這種潛力,并成立了一個專家團隊來開發這項技術。沿途發展的里程碑是2001年在全球范圍內首次推出基于SiC的肖特基二極管,在2006年首次推出了包含SiC的功率模塊,而在最近的2017年,菲拉赫創新工廠全面轉換了150 mm晶圓技術,這是與之相關的。全球最具創新性的Trench CoolSiC?MOSFET的首次亮相。

o4YBAGCl1oeAZ1sfAADBwW6bRD0458.png

圖4:高電壓的器件概念,硅和SiC之間的比較

現代功率器件領域的SiC MOSFET

如前一段所述,如今,SiC MOSFET大部分用于以IGBT為主導組件的區域。圖5總結了SiC MOSFET與IGBT相比的主要優勢。尤其是在部分負載下,由于線性輸出特性,與拐點電壓下的IGBT情況相反,導通損耗可能大大降低。此外,從理論上講,可以通過使用較大的器件面積將傳導損耗減小到無窮小數量。對于IGBT,這是排除在外的。

關于開關損耗,在導通模式下缺少少數載流子可消除尾電流,因此可能產生非常小的關斷損耗。與IGBT相比,導通損耗也降低了,這主要是由于導通電流峰值較小。兩種損耗類型均未顯示溫度升高。但是,與IGBT相比,導通損耗占優勢,而關斷損耗卻很小,這通常與IGBT相反。最后,由于垂直MOSFET結構本身包含一個強大的體二極管,因此不需要額外的續流二極管。該體二極管基于pn二極管,在SiC的情況下,其拐點電壓約為3V。

有人可能會說,在這種情況下,二極管模式下的導通損耗非常高,但是建議(對于低壓硅MOSFET來說,這是最新技術)在二極管模式下工作,以便使二極管的死區時間短,在200 ns和500 ns之間進行硬切換,對于

英飛凌最近還推出了650 V CoolSiC?MOSFET衍生產品,將在完整的650 V產品組合中進行部署。該技術不僅可以補充這種阻斷電壓等級的IGBT,而且還可以補充成功的CoolMOS?技術。兩種器件都具有快速切換和共同的線性IV特性。但是,SiC MOSFET可以在硬開關和高于10 kHz的開關頻率下使體二極管工作。與超結器件相比,它們在輸出電容中的電荷要低得多(Qoss)以及更平滑的電容vs.漏極電壓特性。這些功能使SiC MOSFET可以在半橋和CCM圖騰柱等高效橋拓撲中使用,而CoolMOS?器件在不存在或無法防止在導體二極管上進行硬換向的應用中具有優勢。

這就為SiC和超結MOSFET在600 V至900 V的電壓等級之間成功共存奠定了基礎。應用要求將為設計人員提供最合適的技術選擇。

pIYBAGCl1qOAMx0NAAHgjuZJFa0699.png

圖5:SiC MOSFET與IGBT相比的優勢概述:左動態損耗,右傳導行為,左上集成二極管

結論

英飛凌的設備設計一向以有益的性價比評估為導向,特別強調出色的可靠性,這是客戶習慣于從英飛凌獲得的。英飛凌的SiC溝道MOSFET的概念遵循相同的理念。它結合了低導通電阻和優化的設計,可防止過多的柵極氧化物場應力,并提供與IGBT相似的柵極氧化物可靠性。

英飛凌科技公司的Peter Friedrichs博士

編輯:hfy

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • MOSFET
    +關注

    關注

    146

    文章

    7101

    瀏覽量

    212778
  • 晶體管
    +關注

    關注

    77

    文章

    9641

    瀏覽量

    137876
  • 功率器件
    +關注

    關注

    41

    文章

    1732

    瀏覽量

    90336
  • SiC二極管
    +關注

    關注

    0

    文章

    13

    瀏覽量

    8392
收藏 人收藏

    評論

    相關推薦

    什么是DC/DC轉換器

    穩壓,依據其轉換方式的不同而命名。 DC/DC轉換器工作原理 DC/DC轉換器的工作原理主要基于開關電源技術,其核心在于利用高頻開關(如
    發表于 09-29 15:26

    升壓轉換器功率級的基本計算

    電子發燒友網站提供《升壓轉換器功率級的基本計算.pdf》資料免費下載
    發表于 09-10 09:15 ?0次下載
    升壓<b class='flag-5'>轉換器</b><b class='flag-5'>功率</b>級的基本計算

    了解具有集成功率MOSFET的直流/直流轉換器熱阻規格

    電子發燒友網站提供《了解具有集成功率MOSFET的直流/直流轉換器熱阻規格.pdf》資料免費下載
    發表于 08-26 14:19 ?0次下載
    了解具有集成<b class='flag-5'>功率</b><b class='flag-5'>MOSFET</b>的直流/直流<b class='flag-5'>轉換器</b>熱阻規格

    OC5818內置功率MOSFET的單片降壓型開關模式轉換器中文手冊

    電子發燒友網站提供《OC5818內置功率MOSFET的單片降壓型開關模式轉換器中文手冊.pdf》資料免費下載
    發表于 07-26 11:44 ?0次下載

    OC5820內置功率MOSFET的單片降壓型開關模式轉換器規格書

    電子發燒友網站提供《OC5820內置功率MOSFET的單片降壓型開關模式轉換器規格書.pdf》資料免費下載
    發表于 07-26 11:43 ?1次下載

    貿澤開售適合能量轉換應用的新型英飛凌CoolSiC G2 MOSFET

    MOSFET。CoolSiC? G2 MOSFET系列采用新一代碳化硅 (SiC) MOSFET溝槽技術,開啟了電力系統和能量
    發表于 07-25 16:14 ?634次閱讀

    PWM技術如何控制功率轉換器

    隨著電力電子技術的快速發展,功率轉換器在電力系統扮演著越來越重要的角色。作為一種常見的電源變換裝置,功率
    的頭像 發表于 06-03 16:37 ?607次閱讀

    英飛凌CoolSiC? MOSFET G2,助力下一代高性能電源系統

    所有現代硅功率器件都基于溝槽技術,并已取代了平面技術,那么碳化硅呢?就碳化硅而言,溝槽設計在性能優勢方面與Si功率MOSFET
    發表于 05-16 09:54 ?569次閱讀
    英飛凌<b class='flag-5'>CoolSiC</b>? <b class='flag-5'>MOSFET</b> G2,助力下一代高性能電源系統

    英飛凌新品—CoolSiC 2000V SiC MOSFET系列的產品特點

    CoolSiC 2000V SiC MOSFET系列采用TO-247PLUS-4-HCC封裝,規格為12-100mΩ。由于采用了.XT互聯技術CoolSiC
    的頭像 發表于 03-22 14:08 ?547次閱讀

    英飛凌推出全新CoolSiC MOSFET 2000V產品

    英飛凌科技股份公司,作為全球領先的半導體公司,近日推出了全新的CoolSiC? 2000V SiC MOSFET系列,這一創新產品采用TO-247PLUS-4-HCC封裝,為設計人員提供了滿足更高功率密度需求的解決方案。
    的頭像 發表于 03-20 10:27 ?768次閱讀

    全面提升!英飛凌推出新一代碳化硅技術CoolSiC MOSFET G2

    電子發燒友網報道(文/梁浩斌)近日英飛凌推出了CoolSiC MOSFET G2技術,據官方介紹,這是新一代的溝槽柵SiC MOSFET技術
    的頭像 發表于 03-19 18:13 ?2893次閱讀
    全面提升!英飛凌推出新一代碳化硅<b class='flag-5'>技術</b><b class='flag-5'>CoolSiC</b> <b class='flag-5'>MOSFET</b> G2

    英飛凌推出全新CoolSiC? MOSFET 2000 V, 在不影響系統可靠性的情況下提供更高功率密度

    ? MOSFET 2000 V。這款產品不僅能夠滿足設計人員對更高功率密度的需求,而且即使面對嚴格的高電壓和開關頻率要求,也不會降低系統可靠性。CoolSiC? MOSFET具有更高的
    發表于 03-14 11:07 ?720次閱讀
    英飛凌推出全新<b class='flag-5'>CoolSiC</b>? <b class='flag-5'>MOSFET</b> 2000 V, 在不影響系統可靠性的情況下提供更高<b class='flag-5'>功率</b>密度

    英飛凌推出G2 CoolSiC MOSFET進一步推動碳化硅技術的發展

    碳化硅(SiC)技術一直是推動高效能源轉換和降低碳排放的關鍵,英飛凌最近推出的CoolSiC MOSFET第2代(G2)技術,也是要在這個領
    的頭像 發表于 03-12 09:33 ?781次閱讀
    英飛凌推出G2 <b class='flag-5'>CoolSiC</b> <b class='flag-5'>MOSFET</b>進一步推動碳化硅<b class='flag-5'>技術</b>的發展

    英飛凌推出CoolSiC MOSFET G2技術,提升電力效率與可靠性

    另外,CoolSiC MOSFET產品組合還成功實現了SiC MOSFET市場的最低導通電阻值(Rdson),這大大提高了能效、功率密度,
    的頭像 發表于 03-10 12:32 ?1031次閱讀

    SDI轉AV轉換器技術解析轉換過程中的關鍵要素與優勢

    隨著高清視頻技術的快速發展,SDI(Serial Digital Interface)轉AV轉換器成為了實現高清信號與普通家電設備兼容的關鍵設備。這種轉換器技術上涉及到多個關鍵要素,
    的頭像 發表于 02-22 15:03 ?588次閱讀