精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

用于解釋神經網絡的方法是如何發展的?

中科院長春光機所 ? 來源:新智元 ? 作者:新智元 ? 2020-12-23 10:23 ? 次閱讀

過去11年中用于解釋神經網絡最新方法是如何發展的呢?

本文在 Inception 網絡圖像分類器上嘗試使用引導反向傳播進行解釋演示。

為什么「解釋」很重要?

使用機器學習(ML)算法(尤其是現代深度學習)進行圖像識別的最大挑戰之一,是難以理解為什么一個特定的輸入圖像會產生它所預測的結果。

ML模型的用戶通常想了解圖像的哪些部分是預測中的重要因素。這些說明或“解釋”之所以有價值,有很多原因:

機器學習開發人員可以分析調試模型的解釋,識別偏差,并預測模型是否可能推廣到新的圖像

如果提供了為何做出特定預測的解釋,則機器學習模型的用戶可能會更信任模型

像 GDPR 這樣圍繞機器學習的規則要求一些算法決策能夠用人類的術語來解釋

因此,至少從2009年開始,研究人員就開發了許多不同的方法來打開深度學習的“黑匣子”,從而使基礎模型更容易解釋。

下面,我們為過去十年中最先進的圖像解釋技術整合了視覺界面,并對每種技術進行了簡要描述。

我們使用了許多很棒的庫,但是特別依賴 Gradio 來創建你在下面的 gif 文件和 PAIR-code 的 TensorFlow 實現中看到的接口

用于所有接口的模型是Inception Net圖像分類器,可以在此jupyter筆記本和Colab上找到復制此博客文章的完整代碼。

在我們深入研究論文之前,讓我們先從一個非常基本的算法開始。

七種不同的解釋方法

Leave-one-out (LOO)

Leave-one-out (LOO)是最容易理解的方法之一。如果你想了解圖像的哪個部分負責預測,這可能會是你想到的第一個算法。

其思想是首先將輸入圖像分割成一組較小的區域,然后,運行多個預測,每次都屏蔽一個區域。根據每個區域的「被屏蔽」對輸出的影響程度,為每個區域分配一個重要性分數。這些分數是對哪個區域最負責預測的量化。

這種方法很慢,因為它依賴于運行模型的許多迭代,但是它可以生成非常準確和有用的結果。上面是杜賓狗的圖片示例。

LOO是Gradio庫中的默認解釋技術,完全不需要訪問模型的內部——這是一個很大的優點。

Vanilla Gradient Ascent [2009 and 2013]

Paper: Visualizing Higher-Layer Features of a Deep Network [2009]

Paper: Visualizing Image Classification Models and Saliency Maps [2013]

這兩篇論文的相似之處在于,它們都通過使用梯度上升來探索神經網絡的內部。換句話說,它們認為對輸入或激活的微小更改將增加預測類別的可能性。

第一篇論文將其應用于激活,作者報告說,「有可能找到對高級特征的良好定性解釋, 我們證明,也許是違反直覺的,但這種解釋在單位水平上是可能的,它很容易實現,并且各種技術的結果是一致的。」

第二種方法也采用梯度上升,但是直接對輸入圖像的像素點進行探測,而不是激活。

作者的方法「計算特定于給定圖像和類的類顯著性圖,這樣的地圖可以使用分類ConvNets用于弱監督的對象分割。」

Guided Back-Propogation [2014]

Paper: Striving for Simplicity: The All Convolutional Net [2014]

本文提出了一種新的完全由卷積層構成的神經網絡。由于以前的解釋方法不適用于他們的網絡,因此他們引入了引導式反向傳播。

該反向傳播可在進行標準梯度上升時過濾掉傳播時產生的負激活。作者稱,他們的方法「可以應用于更廣泛的網絡結構。」

接下來是梯度加權類激活映射(gradient-weighted class activation mapping,Grad-CAM) 。它利用「任何目標概念的梯度,流入最后的卷積層,生成一個粗糙的定位映射,突出圖像中的重要區域,以預測概念。」

該方法的主要優點是進一步推廣了可以解釋的神經網絡類(如分類網絡、字幕和可視化問答(VQA)模型) ,以及一個很好的后處理步驟,圍繞圖像中的關鍵對象對解釋進行集中和定位。

像前面的論文一樣,此方法從計算類評分函數相對于輸入圖像的梯度開始。

但是,SmoothGrad通過在輸入圖像中添加噪聲,然后針對圖像的這些擾動版本中的每一個來計算梯度,從而在視覺上銳化這些基于梯度的靈敏度圖。將靈敏度圖平均在一起可以得到更清晰的結果。

Integrated Gradients [2017]

Paper: Axiomatic Attribution for Deep Networks [2017]

不同于以往的論文,本文的作者從解釋的理論基礎入手。它們「確定了歸因方法應該滿足的兩個基本公理——敏感性和實現不變性」。

他們用這些原理來指導設計一種新的歸屬方法(稱為綜合梯度),該方法可以產生高質量的解釋,同時仍然只需要訪問模型的梯度; 但是它添加了一個「基線」超參數,這可能影響結果的質量。

Blur Integrated Gradients [2020]

Paper: Attribution in Scale and Space [2020]

論文研究了一個最新技術---- 這種方法被提出來用于解決具體的問題,包括消除「基線」參數,移除某些在解釋中傾向于出現的視覺偽影。

此外,它還「在尺度/頻率維度上產生分數」,本質上提供了圖像中重要物體的尺度感。

下面這張圖比較了所有這些方法:

原文標題:圖像識別的可視化解釋史

文章出處:【微信公眾號:中科院長春光機所】歡迎添加關注!文章轉載請注明出處。

責任編輯:haq

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 神經網絡
    +關注

    關注

    42

    文章

    4765

    瀏覽量

    100568
  • 機器學習
    +關注

    關注

    66

    文章

    8382

    瀏覽量

    132444

原文標題:圖像識別的可視化解釋史

文章出處:【微信號:cas-ciomp,微信公眾號:中科院長春光機所】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    怎么對神經網絡重新訓練

    重新訓練神經網絡是一個復雜的過程,涉及到多個步驟和考慮因素。 引言 神經網絡是一種強大的機器學習模型,廣泛應用于圖像識別、自然語言處理、語音識別等領域。然而,隨著時間的推移,數據分布可能會
    的頭像 發表于 07-11 10:25 ?424次閱讀

    遞歸神經網絡的實現方法

    (Recurrent Neural Network,通常也簡稱為RNN,但在此處為區分,我們將循環神經網絡稱為Recurrent RNN)不同,遞歸神經網絡更側重于處理樹狀或圖結構的數據,如句法分析樹、自然語言的語法結構等。以下將從遞歸
    的頭像 發表于 07-10 17:02 ?292次閱讀

    BP神經網絡和人工神經網絡的區別

    BP神經網絡和人工神經網絡(Artificial Neural Networks,簡稱ANNs)之間的關系與區別,是神經網絡領域中一個基礎且重要的話題。本文將從定義、結構、算法、應用及未來發展
    的頭像 發表于 07-10 15:20 ?867次閱讀

    神經網絡預測模型的構建方法

    神經網絡模型作為一種強大的預測工具,廣泛應用于各種領域,如金融、醫療、交通等。本文將詳細介紹神經網絡預測模型的構建方法,包括模型設計、數據集準備、模型訓練、驗證與評估等步驟,并附以代碼
    的頭像 發表于 07-05 17:41 ?617次閱讀

    rnn是遞歸神經網絡還是循環神經網絡

    RNN(Recurrent Neural Network)是循環神經網絡,而非遞歸神經網絡。循環神經網絡是一種具有時間序列特性的神經網絡,能夠處理序列數據,具有記憶功能。以下是關于循環
    的頭像 發表于 07-05 09:52 ?503次閱讀

    遞歸神經網絡是循環神經網絡

    遞歸神經網絡(Recurrent Neural Network,簡稱RNN)和循環神經網絡(Recurrent Neural Network,簡稱RNN)實際上是同一個概念,只是不同的翻譯方式
    的頭像 發表于 07-04 14:54 ?648次閱讀

    深度神經網絡的設計方法

    結構的構建,還包括激活函數的選擇、優化算法的應用、正則化技術的引入等多個方面。本文將從網絡結構設計、關鍵組件選擇、優化與正則化策略、以及未來發展趨勢四個方面詳細探討深度神經網絡的設計方法
    的頭像 發表于 07-04 13:13 ?414次閱讀

    卷積神經網絡與循環神經網絡的區別

    網絡結構,分別適用于不同的應用場景。本文將從基本概念、結構組成、工作原理及應用領域等方面對這兩種神經網絡進行深入解讀。
    的頭像 發表于 07-03 16:12 ?2780次閱讀

    bp神經網絡是深度神經網絡

    Network)有相似之處,但它們之間還是存在一些關鍵的區別。 一、引言 神經網絡是一種模擬人腦神經元結構的計算模型,它由大量的神經元(或稱為節點)組成,這些神經元通過權重連接在一起
    的頭像 發表于 07-03 10:14 ?717次閱讀

    bp神經網絡和卷積神經網絡區別是什么

    BP神經網絡(Backpropagation Neural Network)和卷積神經網絡(Convolutional Neural Network,簡稱CNN)是兩種不同類型的人工神經網絡,它們在
    的頭像 發表于 07-03 10:12 ?1051次閱讀

    卷積神經網絡分類方法有哪些

    卷積神經網絡(Convolutional Neural Networks,CNN)是一種深度學習模型,廣泛應用于圖像分類、目標檢測、語義分割等計算機視覺任務。本文將詳細介紹卷積神經網絡的分類
    的頭像 發表于 07-03 09:40 ?410次閱讀

    卷積神經網絡和bp神經網絡的區別

    化能力。隨著深度學習技術的不斷發展神經網絡已經成為人工智能領域的重要技術之一。卷積神經網絡和BP神經
    的頭像 發表于 07-02 14:24 ?3077次閱讀

    神經網絡在數學建模中的應用

    數學建模是一種利用數學方法和工具來描述和分析現實世界問題的過程。神經網絡是一種模擬人腦神經元結構和功能的計算模型,可以用于解決各種復雜問題。在數學建模中,
    的頭像 發表于 07-02 11:29 ?848次閱讀

    基于神經網絡算法的模型構建方法

    神經網絡是一種強大的機器學習算法,廣泛應用于各種領域,如圖像識別、自然語言處理、語音識別等。本文詳細介紹了基于神經網絡算法的模型構建方法,包括數據預處理、
    的頭像 發表于 07-02 11:21 ?467次閱讀

    神經網絡架構有哪些

    神經網絡架構是機器學習領域中的核心組成部分,它們模仿了生物神經網絡的運作方式,通過復雜的網絡結構實現信息的處理、存儲和傳遞。隨著深度學習技術的不斷發展,各種
    的頭像 發表于 07-01 14:16 ?622次閱讀