精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

對(duì)一種斬波運(yùn)算放大器輸入電流噪聲的理論分析和測(cè)量

lPCU_elecfans ? 來(lái)源:電子發(fā)燒友網(wǎng) ? 作者:Yoshinori Kusuda ? 2021-01-27 09:42 ? 次閱讀

摘要

本文介紹了對(duì)一種斬波運(yùn)算放大器輸入電流噪聲的理論分析和測(cè)量,該放大器具有 10 pF輸入電容、5.6 nV/√Hz電壓噪聲PSD和4 MHz單位增益帶寬。當(dāng)配置的閉環(huán)增益更高時(shí),輸入電流噪聲以輸入斬波器處動(dòng)態(tài)電導(dǎo)的熱噪聲為主。此外,理論分析確定了輸入電流噪聲的另一個(gè)來(lái)源—由輸入斬波器處動(dòng)態(tài)電導(dǎo)采樣的放大器電壓噪聲所引起。

而且,在采樣時(shí),寬帶電壓噪聲譜密度會(huì)折回到低頻,使得相應(yīng)的電流噪聲譜密度實(shí)際上隨著閉環(huán)帶寬的加寬而增加,因而配置的閉環(huán)增益越小,電流噪聲譜密度越大。當(dāng)閉環(huán)增益為10時(shí),測(cè)得的電流噪聲為0.28pA/√Hz,但在單位增益配置時(shí),電流噪聲增加到 0.77 pA/√Hz。

I.引言

斬波技術(shù)周期性地校正放大器的失調(diào)電壓,故能實(shí)現(xiàn)微伏級(jí)失調(diào) 電壓和非常小的1/f噪聲(其轉(zhuǎn)折頻率低于亞赫茲)。因此,許多斬波運(yùn)算放大器和儀表放大器主要用于檢測(cè)源阻抗和信號(hào)頻率相對(duì)較低的小輸入電壓。其重要應(yīng)用之一是放大反映光、溫度、磁場(chǎng)、力的毫伏級(jí)傳感器信號(hào),此類信號(hào)的頻率大多低于千赫茲2 然而,相比于沒有斬波的傳統(tǒng)CMOS放大器,輸入斬波器的開關(guān)會(huì)引入高得多的輸入偏置電流和輸入電流噪聲。當(dāng)放大器的輸入由高源阻抗驅(qū)動(dòng)時(shí),這種輸入電流噪聲會(huì)被轉(zhuǎn)換為電壓噪聲,其在放大器整體噪聲中可能占據(jù)主導(dǎo)地位。

文章“?斬波放大器中輸入電流噪聲的測(cè)量和分析”解釋了輸入電 流噪聲的各種可能來(lái)源,并且將與輸入 MOS開關(guān)的電荷注入相關(guān) 的散粒噪聲確定為主要噪聲源。然而,文章“帶開關(guān)輸入的放大器中的額外電流噪聲”將輸入斬波器處的動(dòng)態(tài)電導(dǎo)的熱噪聲確定為主要噪聲源。在所有先前的測(cè)量中,放大器的輸出電壓噪聲通過(guò)放大器輸出到輸入的反饋衰減與輸入斬波器隔離。

雖然斬波運(yùn)算放大器傳統(tǒng)上用于高閉環(huán)增益配置,但低閉環(huán)增益 和/或高源阻抗配置也需要其低失調(diào)電壓和低1/f噪聲特性。因此,了解其在這些配置中的電流噪聲行為十分重要。這篇文章簡(jiǎn)單介 紹了高和低兩種閉環(huán)增益配置下斬波運(yùn)算放大器的輸入電流噪聲分析和測(cè)量,參見“采用自適應(yīng)時(shí)鐘增強(qiáng)技術(shù)的5.6 nV/√Hz斬波運(yùn)算放大器在軌到軌輸入范圍內(nèi)實(shí)現(xiàn)最大0.5μV失調(diào)”。

它確定了輸入電流噪聲的另一個(gè)來(lái)源,即由輸入斬波器的動(dòng)態(tài)電導(dǎo)采樣的運(yùn) 算放大器寬帶電壓噪聲所引起。此外,在采樣時(shí),來(lái)自斬波的偶次諧波頻率的電壓噪聲功率譜密度(PSD)會(huì)折回到低頻,導(dǎo)致相應(yīng)的電流噪聲PSD增加。因此,當(dāng)閉環(huán)增益較低時(shí),此噪聲源在總輸入電流噪聲中可能占主導(dǎo)地位,使得運(yùn)算放大器的輸出電壓噪聲以較小的衰減到達(dá)輸入斬波器。

第II部分回顧了先前報(bào)告的輸入電流噪聲源,第III部分解釋了由采樣寬帶電壓噪聲和相關(guān)的噪聲譜折疊效應(yīng)引起的輸入電流噪聲源的機(jī)制。第I V部分對(duì)運(yùn)算放大器的各種電流噪聲源進(jìn)行了一些數(shù)值計(jì)算。第V部分將計(jì)算出的電流噪聲與仿真和測(cè)量結(jié)果進(jìn)行比較,以驗(yàn)證分析。第VI部分提出了關(guān)于降低輸入電流噪聲的一些建議,文章最后在第VII部分中給出了一些結(jié)論。

II. 先前報(bào)告的輸入電流噪聲源

“斬波放大器中輸入電流噪聲的測(cè)量和分析”一文中解釋了如下三種電流噪聲源。第一,輸入開關(guān)的通道電荷注入可以近似為平均電流Iq_ave,從而導(dǎo)致散粒噪聲:

ffd89aee-5fb0-11eb-8b86-12bb97331649.png

其中fCHOPP為斬波頻率,而(WLCox)SW 和(VGS – VTH)SW分別為開關(guān)的柵極氧化層電容和過(guò)驅(qū)電壓。 第二,時(shí)鐘驅(qū)動(dòng)器產(chǎn)生kTCC噪聲電荷,其被采樣到開關(guān)的柵極氧化層電容上,然后噪聲電荷在每次斬波時(shí)流入放大器的輸入:

00cb03ba-5fb1-11eb-8b86-12bb97331649.png

00f764d2-5fb1-11eb-8b86-12bb97331649.png

圖1. 斬波和輸入電容引起的動(dòng)態(tài)輸入電流。 第三,如圖1所示,每當(dāng)輸入斬波器CHOP1切換時(shí),動(dòng)態(tài)輸入電流IIN(t)就會(huì)流入放大器的輸入電容CIN。當(dāng)施加直流電壓源 VIN(t) = VIN_DC時(shí),平均輸入電流IIN_ave 由下式給出:

017de5ca-5fb1-11eb-8b86-12bb97331649.png


然后,相關(guān)的動(dòng)態(tài)輸入電導(dǎo) GIN_ave和熱噪聲in_GIN由下式給出:

01b9ace0-5fb1-11eb-8b86-12bb97331649.png

021c756e-5fb1-11eb-8b86-12bb97331649.png

注意,三個(gè)噪聲方程式1、2、5中的任何一個(gè)都包含一組獨(dú)特的電路和開關(guān)參數(shù),根據(jù)參數(shù)值不同,任何一種噪聲都可能在整體噪聲中占主導(dǎo)地位。在所有三個(gè)測(cè)量的放大器中(一個(gè)開環(huán)斬波儀表放大器和兩個(gè)斬波運(yùn)算放大器,閉環(huán)增益為100),方程式1所示的散粒噪聲均在總電流噪聲中占主導(dǎo)地位。該開環(huán)儀表放大器僅有125 fF輸入電容,因此方程式5所示的動(dòng)態(tài)電導(dǎo)的熱噪聲無(wú)關(guān)緊要。

在文章“帶開關(guān)輸入的放大器中的額外電流噪聲”中,測(cè)量了由分立FET構(gòu)成的斬波器,當(dāng)添加10pF至100pF的分立電容時(shí),方程式5所示的熱噪聲在總電流噪聲中占主導(dǎo)地位。請(qǐng)注意,電流噪聲隨電容值增加而增加。 III.采樣電壓噪聲和噪聲譜折疊效應(yīng)引起的電流噪聲 如方程式5所暗示的,動(dòng)態(tài)電導(dǎo)本身會(huì)產(chǎn)生熱電流噪聲,而且其采樣操作還會(huì)將輸入斬波器上的電壓噪聲轉(zhuǎn)換為電流噪聲。

采樣交流輸入電壓引起的動(dòng)態(tài)輸入電流 直流輸入電壓下的動(dòng)態(tài)輸入電流由方程式3給出。現(xiàn)在考慮一種具有交流正弦差分輸入電壓VIN(t)和頻率 2 × fCHOPP的情況,如圖2所示。可以看出,當(dāng)斬波時(shí)鐘CHOP和CHOP_INV切換時(shí),VIN(t)達(dá)到其峰值VIN_AC。因此,就像直流差分輸入電壓一樣,該交流差分輸入電壓產(chǎn)生動(dòng)態(tài)輸入電流IIN(t),其平均電流IIN_ave由下式給出:

023950e4-5fb1-11eb-8b86-12bb97331649.png

0294fe8a-5fb1-11eb-8b86-12bb97331649.png

圖2. 交流差分輸入電壓下的動(dòng)態(tài)輸入電流波形。

03437cda-5fb1-11eb-8b86-12bb97331649.png

圖3. 電壓噪聲PSD被采樣并轉(zhuǎn)換為電流噪聲PSD時(shí)的噪聲譜折疊效應(yīng) 當(dāng)輸入電壓和斬波時(shí)鐘之間的相位差是隨機(jī)的時(shí)候,方程式可以使用輸入電壓VIN_RMS的有效值和相應(yīng)的輸入電流IIN_ave_RMS來(lái)重寫:

03bb4738-5fb1-11eb-8b86-12bb97331649.png

當(dāng)以較高的斬波偶次諧波頻率(例如4 × fCHOP 或6 × fCHOP)施加交流輸入差分電壓時(shí),輸入電流也會(huì)以相同方式出現(xiàn)。 采樣電壓噪聲PSD和噪聲譜折疊效應(yīng)引起的輸入電流噪聲PSD 當(dāng)輸入電壓的頻譜包括斬波的多個(gè)偶次諧波頻率時(shí),它們?nèi)空刍氐降皖l,這被稱為噪聲譜折疊效應(yīng)。斬波被認(rèn)為是一種調(diào)制技術(shù),而不是采樣技術(shù)。然而,此動(dòng)態(tài)輸入電流基于采樣的輸入電壓而出現(xiàn),不是基于連續(xù)輸入電壓而出現(xiàn),因此會(huì)發(fā)生噪聲譜折疊。

換句話說(shuō),平均動(dòng)態(tài)電流量?jī)H由斬波情況下的差分輸入電壓決定,而不是由任何其他時(shí)間的差分輸入電壓決定。 圖3顯示了噪聲譜折疊效應(yīng),其中輸入電壓噪聲PSD在DC到5 × fCHOP之間為enn,但在5 × fCHOPP以上為零。這就產(chǎn)生了DC到±fCHOP(即奈奎斯特頻率)之間的輸入電流噪聲PSD。±fCHOP之間的輸入電壓噪聲PSDen(fen)會(huì)貢獻(xiàn)無(wú)頻移的輸入電流噪聲PSDin_en_GIN_0。

03dd9fd6-5fb1-11eb-8b86-12bb97331649.png

其中,fen和fin分別是輸入電壓噪聲PSD和相應(yīng)的輸入電流噪聲PSD 的頻率。高于fCHOP且低于3 × fCHOP的輸入電壓噪聲PSD會(huì)貢獻(xiàn)頻移 為–2 × fCHOP的輸入電流噪聲PSD:

043680f6-5fb1-11eb-8b86-12bb97331649.png


總輸入電流噪聲PSDin_en_GIN_RSS(f)是通過(guò)對(duì)運(yùn)算放大器閉環(huán)帶寬內(nèi)的所有頻率折疊的PSD進(jìn)行求和得到的,包括方程式8和9中的那些PSD,采用和方根(RSS)計(jì)算:

0495177e-5fb1-11eb-8b86-12bb97331649.png


當(dāng)電壓噪聲PSD在en處是平坦的,并且?guī)揞l率為fen_BW,相應(yīng)的低頻電流噪聲PSD由下式給出:

04d63aa6-5fb1-11eb-8b86-12bb97331649.png

當(dāng)fen_BW/fCHOP >> 1時(shí),方程式可近似為:

05451c28-5fb1-11eb-8b86-12bb97331649.png

其中,en × √fen_BW由積分有效值電壓噪聲en_RMSINT代替。該輸入電流噪聲源大致與差分輸入端的有效值電壓噪聲、輸入電容大小和斬波頻率的平方根成比例。 斬波運(yùn)算放大器的輸入電流噪聲估計(jì) 斬波運(yùn)算放大器框圖 本部分及后面的部分分析、仿真并測(cè)量“采用自適應(yīng)時(shí)鐘增強(qiáng)技術(shù)的5.6 nV/√H z斬波運(yùn)算放大器在軌到軌輸入范圍內(nèi)實(shí)現(xiàn)最大0.5μ V失調(diào)”中介紹的斬波運(yùn)算放大器。

該運(yùn)算放大器采用0.35μm CMOS工藝實(shí)現(xiàn),輔之以5V晶體管,實(shí)現(xiàn)了5.6 nV/√Hz的電壓噪聲PSD和4 MHz的單位增益帶寬。其框圖如圖4所示,表1總結(jié)了輸入斬波器(CHOP1)的參數(shù)。為實(shí)現(xiàn)軌到軌輸入共模范圍,輸入跨導(dǎo)放大器級(jí)Gm11由n溝道和p溝道差分對(duì)組成,二者都會(huì)貢獻(xiàn)輸入電容CIN。此外需要較大尺寸的輸入MOS器件,從而以高功效比增加Gm1的跨導(dǎo)。輸入斬波器CHOP1中有四個(gè)開關(guān),每個(gè)開關(guān)都是由NMOS實(shí)現(xiàn),并且其柵極電壓基于輸入電壓而自適應(yīng)偏置,使得在輸入電壓變化時(shí),其過(guò)驅(qū)電壓恒定在0.5 V。

05b22624-5fb1-11eb-8b86-12bb97331649.png

圖4. 斬波運(yùn)算放大器框圖

06287d10-5fb1-11eb-8b86-12bb97331649.png

差分輸入端上的電壓噪聲 為計(jì)算方程式12中所示的電流噪聲PSD,需要知道積分有效值電壓噪聲vin_RMSINT。使用閉環(huán)增益=1、2、5、10仿真斬波運(yùn)算放大器。圖5(a)和(b)分別顯示了運(yùn)算放大器差分輸入端的電壓噪聲PSD及其積分有效值噪聲。本文中的所有仿真均由SpectreRF周期性噪聲仿真(PNOISE)進(jìn)行,以考慮斬波的開關(guān)效應(yīng)。由于斬波,噪聲PSD在100 kHz以下是平坦的,但在200 kHz的斬波頻率處達(dá)到峰值。

請(qǐng)注意,這些數(shù)字表示運(yùn)算放大器差分輸入端的噪聲,而不是輸出端噪聲,因此低于100kHz的噪聲PSD在不同閉環(huán)增益下是恒定的。在1MHz以上,噪聲PSD也會(huì)增加,并以Gm2, Gm3,和Gm4的熱噪聲為主,原因是Gm1的增益下降。因此,其積分有效值噪聲在1 MHz以上也會(huì)增加,特別是在閉環(huán)增益較低的情況下,主要原因是閉環(huán)帶寬較高。增益 = 10時(shí),差分輸入端的積分有效值電壓噪聲為11 μVrms,但增益 = 1時(shí)為68 μVrms。

06ca4ae6-5fb1-11eb-8b86-12bb97331649.png

圖5. 斬波運(yùn)算放大器的仿真差分輸入電壓噪聲 每個(gè)輸入電流噪聲源的估算 接下來(lái)將仿真得到的積分有效值電壓噪聲應(yīng)用于方程式12以計(jì)算電流噪聲PSD。另外,其他噪聲源4引起的電流噪聲PSD是通過(guò)將表1中的參數(shù)應(yīng)用于方程式1、2、5來(lái)計(jì)算的。圖6顯示了閉環(huán)增益從1到10時(shí)計(jì)算出的四個(gè)噪聲源的電流噪聲PSD。當(dāng)閉環(huán)增益為1和2時(shí),采樣寬帶電壓噪聲PSD引起的電流噪聲PSD(方程式12)在總電流噪聲PSD中占主導(dǎo)地位。

它隨著閉環(huán)增益提高而減小,當(dāng)閉環(huán)增益為10時(shí),其僅使總輸入電流噪聲PSD增加7%。相反,當(dāng)閉環(huán)增益高于5時(shí),總電流噪聲PSD以動(dòng)態(tài)電導(dǎo)本身的熱噪聲(方程式5)為主,故而幾乎保持恒定。因此,對(duì)于該運(yùn)算放大器,使用最高10倍的閉環(huán)增益來(lái)評(píng)估電流噪聲即足夠。 V. 仿真和測(cè)量結(jié)果 為了驗(yàn)證分析,將圖6所示的總電流噪聲PSD計(jì)算結(jié)果與仿真和測(cè)量結(jié)果進(jìn)行比較。PNOISE仿真和測(cè)量均利用圖7所示電路設(shè)置進(jìn)行。電壓噪聲PSDen_OUT是通過(guò)短路RS來(lái)測(cè)量,總噪聲PSDen_OUT_RS是在RS = 100 kΩ下進(jìn)行測(cè)量。電流噪聲PSD in_IN則由下式給出:

0753f714-5fb1-11eb-8b86-12bb97331649.png

07dbb3b6-5fb1-11eb-8b86-12bb97331649.png

其中,(1 + RF/RG)是運(yùn)算放大器周圍的閉環(huán)增益,GPOST =100是后置增益,用以簡(jiǎn)化動(dòng)態(tài)信號(hào)分析儀HP 35670A的測(cè)量。注意在方程式13中,en_OUT_RS和en_OUT以RSS形式減去,因?yàn)殡娏髟肼昉SD主要由較高頻率的折疊噪聲引起,因而與電壓噪聲PSD不相關(guān)。

0842c38a-5fb1-11eb-8b86-12bb97331649.png

圖6. 不同來(lái)源的輸入電流噪聲貢獻(xiàn)計(jì)算結(jié)果

08dda80a-5fb1-11eb-8b86-12bb97331649.png

圖7. 用于輸入電流噪聲仿真和測(cè)量的電路設(shè)置

外部電容 CS = 100 pF 將RS的噪聲帶寬限制在截止頻率16 kHz。在這種情況下,RS的熱噪聲在斬波的第一偶次諧波頻率(400kHz)處得到充分衰減,因此不會(huì)通過(guò)噪聲譜折疊效應(yīng)貢獻(xiàn)電流噪聲。另一方面,運(yùn)算放大器寬帶輸出電壓噪聲達(dá)到負(fù)輸入VINN, ,由輸入斬波器處的動(dòng)態(tài)電導(dǎo)采樣,可能會(huì)貢獻(xiàn)相當(dāng)多的電流噪聲。隨后,低頻中的電流噪聲PSD再次被RS轉(zhuǎn)換為電壓噪聲,此噪聲可以在后置增益級(jí)的輸出端進(jìn)行測(cè)量。

圖8顯示了增益 = 1配置(RG開路且RF短路,如圖7所示)下仿真和測(cè)量得到的全頻率范圍輸入電流噪聲PSD。在0.01 kHz時(shí),仿真和測(cè)量得到的噪聲PSD分別為0.69 pA/√Hz和0.78 pA/√Hz。然后,噪聲PSD在由 RS和CS產(chǎn)生的16 kHz截止頻率處開始下降。圖9顯示了不同閉環(huán)增益下0.01 kHz時(shí)的輸入電流噪聲PSD,以將圖6中的計(jì)算 值與仿真和測(cè)量結(jié)果進(jìn)行比較。仿真和測(cè)量得到的電流噪聲PSD均隨著閉環(huán)增益的降低而增加,與計(jì)算結(jié)果有良好的相關(guān)性。增益=10時(shí)測(cè)得的輸入電流噪聲PSD為0.28 pA/√Hz,但增益 = 1時(shí)提高到最大0.77 pA/√Hz。

0913f7a2-5fb1-11eb-8b86-12bb97331649.png

圖8. 輸入電流噪聲PSD與頻率的關(guān)系

096c82be-5fb1-11eb-8b86-12bb97331649.png

圖9. 10 Hz時(shí)的輸入電流噪聲PSD與閉環(huán)增益的關(guān)系 VI. 減少輸入電流噪聲的建議 方程式1、2、5、12給出的所有電流噪聲源都與斬波頻率的平方根成比例增加。此外,與輸入斬波器處動(dòng)態(tài)電導(dǎo)相關(guān)的電流噪聲源(方程式5和12)隨著放大器的輸入電容增加而增加。這意味著針對(duì)較低電壓噪聲PSD而設(shè)計(jì)的斬波運(yùn)算放大器往往具有較高的輸入電流噪聲PSD,因?yàn)樾枰黾悠漭斎肫骷拇笮 ?/p>

在給定源阻抗下,必須理解這種權(quán)衡才能實(shí)現(xiàn)最佳電壓噪聲和電流噪聲PSD。如果可能,應(yīng)避免在弱反轉(zhuǎn)區(qū)下使用互補(bǔ)輸入對(duì)或輸入晶體管,以便減小輸入電容。 方程式12表明,電流噪聲PSD隨著放大器差分輸入上的積分有效值電壓噪聲增加而增加,因而會(huì)隨著噪聲帶寬增加而增加。與開環(huán)斬波儀表放大器相比,斬波運(yùn)算放大器更容易受到這種噪聲源的影響,因?yàn)槠漭敵鲈肼暱梢酝ㄟ^(guò)反饋網(wǎng)絡(luò)到達(dá)輸入端。如果可能,可以使用較高閉環(huán)增益來(lái)降低噪聲帶寬。降低噪聲帶寬的另一種辦法是將電容與RG, RS和/或放大器差分輸入并聯(lián),如圖7所示。

VII. 結(jié)論 本文確定了另一種輸入電流噪聲源,它是由輸入斬波器處動(dòng)態(tài)電導(dǎo)采樣的放大器寬帶電壓噪聲所引起的。本文還發(fā)現(xiàn),與先前告的其他噪聲源不同,該電流噪聲PSD隨著閉環(huán)帶寬的加寬而增加,原因在于與輸入斬波器相關(guān)的噪聲譜折疊效應(yīng)。測(cè)量結(jié)果證實(shí)了本文的分析:增益=10時(shí),電流噪聲為0.28pA/√Hz;增益=1時(shí),由于閉環(huán)帶寬增加,電流噪聲提高到0.77pA/√Hz。本文為放大器設(shè)計(jì)人員和用戶提供了一些關(guān)于降低斬波放大器輸入電流噪聲的建議。表2比較了本文評(píng)估的斬波運(yùn)算放大器6與其他具有類似電壓噪聲PSD的新近斬波運(yùn)算放大器8, 9, 10的整體性能。


0a0e5e5e-5fb1-11eb-8b86-12bb97331649.png

責(zé)任編輯:xj

原文標(biāo)題:斬波運(yùn)算放大器中輸入電流噪聲和 偶次諧波折疊效應(yīng)的分析

文章出處:【微信公眾號(hào):電子發(fā)燒友網(wǎng)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 放大器
    +關(guān)注

    關(guān)注

    143

    文章

    13433

    瀏覽量

    212189
  • 電流
    +關(guān)注

    關(guān)注

    40

    文章

    6502

    瀏覽量

    131116
  • 噪聲
    +關(guān)注

    關(guān)注

    13

    文章

    1099

    瀏覽量

    47281
  • 斬波
    +關(guān)注

    關(guān)注

    1

    文章

    21

    瀏覽量

    21799

原文標(biāo)題:斬波運(yùn)算放大器中輸入電流噪聲和 偶次諧波折疊效應(yīng)的分析

文章出處:【微信號(hào):elecfans,微信公眾號(hào):電子發(fā)燒友網(wǎng)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    儀表放大器和普通運(yùn)算放大器有何不同?通常有哪些特點(diǎn)?

    Amplifier,簡(jiǎn)稱IA)是一種高增益、高精度、低噪聲、低漂移的放大器,主要用于測(cè)量微弱信號(hào),如生物電信號(hào)、壓力信號(hào)等。它由三個(gè)運(yùn)算放大器
    的頭像 發(fā)表于 08-06 14:23 ?493次閱讀

    運(yùn)算放大器輸入電阻怎么算

    運(yùn)算放大器(Operational Amplifier,簡(jiǎn)稱Op-Amp)是一種具有高增益、高輸入阻抗、低輸出阻抗的模擬集成電路。在許多電子電路中,運(yùn)算放大器被廣泛應(yīng)用于信號(hào)
    的頭像 發(fā)表于 07-12 11:47 ?653次閱讀

    TLC2654,TLC2654A低噪聲穩(wěn)定運(yùn)算放大器數(shù)據(jù)表

    電子發(fā)燒友網(wǎng)站提供《TLC2654,TLC2654A低噪聲穩(wěn)定運(yùn)算放大器數(shù)據(jù)表.pdf》資料免費(fèi)下載
    發(fā)表于 06-07 09:44 ?2次下載
    TLC2654,TLC2654A低<b class='flag-5'>噪聲</b><b class='flag-5'>斬</b><b class='flag-5'>波</b>穩(wěn)定<b class='flag-5'>運(yùn)算放大器</b>數(shù)據(jù)表

    運(yùn)算放大器輸出電壓與輸入電壓關(guān)系

    和系統(tǒng)中。在本文中,將詳細(xì)探討運(yùn)算放大器的輸出電壓與輸入電壓之間的關(guān)系。 首先,了解運(yùn)算放大器的基本原理非常重要。個(gè)典型的運(yùn)算放大器
    的頭像 發(fā)表于 02-23 15:31 ?3621次閱讀

    公式+案例 搞定同相運(yùn)算放大器

     同相運(yùn)算放大器一種運(yùn)算放大器,其輸出電壓和輸入電壓同相。反饋是通過(guò)個(gè)電阻從運(yùn)算放大器的輸出
    發(fā)表于 02-15 11:02 ?1.1w次閱讀
    公式+案例 搞定同相<b class='flag-5'>運(yùn)算放大器</b>

    運(yùn)算放大器輸入電壓范圍怎么算

    運(yùn)算放大器(Operational Amplifier,簡(jiǎn)稱OP-AMP)是一種重要的電子元件,廣泛應(yīng)用于電子電路中。輸入電壓范圍是指運(yùn)算放大器能夠正常工作的
    的頭像 發(fā)表于 12-26 10:28 ?1149次閱讀

    運(yùn)算放大器電路分析串并聯(lián)

    運(yùn)算放大器一種非常重要的電路,廣泛應(yīng)用于模擬電路中。在本文中,我們將詳細(xì)分析運(yùn)算放大器電路的串并聯(lián)。 運(yùn)算放大器(Operational
    的頭像 發(fā)表于 12-20 09:40 ?1890次閱讀

    簡(jiǎn)單認(rèn)識(shí)運(yùn)算放大器

    運(yùn)算放大器 (Operational Amplifier, Op-Amp)是一種能夠?qū)ξ⑷跣盘?hào)進(jìn)行放大的電路。運(yùn)算放大器的信號(hào)輸入通常采用直
    的頭像 發(fā)表于 12-14 16:19 ?765次閱讀

    噪聲運(yùn)算放大器電路分析

    電子發(fā)燒友網(wǎng)站提供《噪聲運(yùn)算放大器電路分析.pdf》資料免費(fèi)下載
    發(fā)表于 11-24 10:34 ?2次下載
    <b class='flag-5'>噪聲</b>與<b class='flag-5'>運(yùn)算放大器</b>電路<b class='flag-5'>分析</b>

    電流反饋運(yùn)算放大器噪聲考慮因素是什么?

    電流反饋運(yùn)算放大器噪聲考慮因素
    發(fā)表于 11-23 07:57

    運(yùn)算放大器的“最大電源電流” 規(guī)格解析

    只需確保運(yùn)算放大器輸入在數(shù) 據(jù)手冊(cè)技術(shù)規(guī)格表規(guī)定的輸入電壓范圍(IVR)內(nèi)。 要測(cè)量開環(huán)下的電源電流,例如作為比較器工作時(shí),參見 圖4和圖
    發(fā)表于 11-21 06:22

    運(yùn)算放大器參數(shù)解析與LTspice應(yīng)用仿真》+學(xué)習(xí)心得4第三章專用放大器

    的電阻可以增加CMRR,但同時(shí)也會(huì)增加噪聲。因此,需要在提高CMRR和降低噪聲之間進(jìn)行權(quán)衡。此外,選擇具有高CMRR的運(yùn)算放大器也是個(gè)有效的方案。 跨阻
    發(fā)表于 11-17 00:51

    測(cè)量運(yùn)算放大器輸入電容時(shí),應(yīng)關(guān)注哪些方面?

    測(cè)量運(yùn)算放大器輸入電容時(shí),應(yīng)關(guān)注哪些方面? 運(yùn)算放大器(Operational Amplifier,簡(jiǎn)稱OP-AMP)是一種關(guān)鍵的電子器件
    的頭像 發(fā)表于 10-25 11:50 ?424次閱讀

    什么是運(yùn)算放大器輸入補(bǔ)償電壓?運(yùn)算放大器的共模輸入電壓是多少?

    什么是理想放大器?什么是運(yùn)算放大器輸入補(bǔ)償電壓?運(yùn)算放大器的共模輸入電壓(CMVIN)是多少? 理想
    的頭像 發(fā)表于 10-25 11:01 ?1353次閱讀

    如何直接測(cè)量運(yùn)算放大器輸入差分電容?

    如何直接測(cè)量運(yùn)算放大器輸入差分電容? 運(yùn)算放大器(Operation Amplifier,簡(jiǎn)稱Op Amp),是一種廣泛應(yīng)用于電子電路中的集
    的頭像 發(fā)表于 10-25 10:57 ?617次閱讀