精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

5nm手機芯片功耗過高?

我快閉嘴 ? 來源:中國電子報 ? 作者:沈叢 ? 2021-02-04 08:40 ? 次閱讀

功耗是芯片制造工藝演進時備受關注的指標之一。比起7nm工藝節點,5nm工藝可以使產品性能提高15%,晶體管密度最多提高1.8倍。三星獵戶座1080、華為麒麟9000、驍龍888和蘋果的A14芯片都采取了5nm工藝制程。然而,5nm手機芯片功耗過高的問題卻于近期被媒體頻頻報道。這也不禁令人產生質疑:先進制程是否只是噱頭?芯片廠商是否還有必要花費高價和大量時間,在芯片先進制程方面持續進行研發和投入?

先進制程只是噱頭?

數據顯示,28nm工藝的設計成本為0.629億美元。隨著制程工藝的推進,芯片的設計成本迅速上升。7nm工藝節點的成本暴增至3.49億美元,5nm工藝所需成本更是高達4.76億美元。另有數據顯示,臺積電每片5nm晶圓的代工費用約為17000美元,這一數字幾乎是7nm芯片所需費用的兩倍。因為成本的壓力,許多晶圓代工廠無法參與到先進制程工藝的賽道。目前,具備先進制程芯片生產能力的代工廠,僅有臺積電、三星和英特爾三家。然而,高昂的付出卻仍然無法解決功耗問題,先進制程工藝是否只是噱頭?

“手機芯片的制程數值越小,意味著芯片晶體管尺寸進一步微縮,芯片中元器件的排列也更加密集。這使得單位面積內,芯片可集成的晶體管數目增多。此次手機芯片制程由7nm提升至5nm,使得芯片上集成的晶體管數目得到顯著提升。以華為麒麟9000芯片為例,和上一代采用7nm工藝制程的麒麟990(5G版)相比,華為麒麟9000的晶體管數目足足多了50億,總數目提高至153億。晶體管數目越多,芯片相應的運算和存儲能力也就越強,這使得芯片在程序運行加載速度、數據處理性能等方面都獲得了較為顯著的提升。除此之外,5nm手機SoC芯片更強調5G能力,5G基帶芯片的集成使其在通信性能方面獲得了明顯提升。”復旦大學微電子學院教授周鵬向記者說道。

隨著摩爾定律的發展,半導體產業本身就是一部關于創新的著作,里面凝聚了許多迭代創新的技術,當然也包括了試錯的過程。周鵬認為,5nm技術節點是目前先進半導體技術的集大成者。現階段,5nm技術才剛推出第一代工藝,它所面對的問題主要源于工藝的不穩定性。在每一代工藝節點的研發中,新產品都會面臨類似的問題,這種問題的解決還需要更多研發時間的投入和技術上的改進迭代。

Gartner研究副總裁盛凌海也指出,任何新的工藝都需要有一個磨合期。隨著技術的更新迭代,出現的問題將得到解決。手機芯片剛剛開啟5nm時代,推出5nm手機芯片的廠商成為第一批“吃螃蟹的人”。然而,沒有吃到“螃蟹黃”,并不意味著“螃蟹肉”就不夠鮮美。隨著時間的推移和技術的演進,5nm芯片會體現更多優勢,讓諸多手機廠商吃到“螃蟹黃”。

為何會出現功耗問題?

為何采用先進工藝制造的芯片產品容易出現功耗問題?周鵬介紹,目前的芯片產品越來越追求高性能,功耗的增加主要來源于“漏電”這一不可控現象。他表示,構成芯片的基本單元——晶體管可被視為一個控制電流的電子開關。它可以把功耗分成兩部分,即靜態功耗和動態功耗。動態功耗是指在開關過程中產生的功耗,而靜態功耗是指開關在關閉時,泄漏電流產生的功耗。如今5nm手機芯片出現功耗過高的問題,主要是泄漏電流導致的靜態功耗增加。

為提高芯片的性能,就需要把電子開關對電流通斷的控制能力提高,以加快開關的速度。這意味著,開關要在更小尺寸的情況下通過更大的電流。開關的尺寸越小,對制備工藝的要求就越高,這使得開關在關閉狀態下,會有更多泄露電流。這部分產生的功耗是不可控的,是否產生功耗將直接由工藝的穩定性決定。要想使產品的性能提升,就需要更小的芯片制程,而芯片制程越小,就會為制造工藝帶來更大的挑戰。由于難以保障工藝的穩定性,漏電現象會愈發明顯,功耗也會變大。

也有聲音稱,此次5nm芯片出現功耗問題,意味著FinFET工藝結構將不再適用于5nm芯片制程。用于3nm工藝節點的GAA工藝結構,有望提前被用在5nm芯片中。

自英特爾于2011年首次推出基于FinFET結構的22nm工藝以來,FinFET工藝結構已經在先進集成電路芯片中應用了十年。周鵬介紹,FinFET結構的提出是為了克服平面MOSFET結構下,由于源極和漏極越來越近、氧化物越來越薄所導致的漏電問題。它的優勢主要體現在兩個方面。一方面是可以使晶體管在更小的平面結構尺寸下,緩解漏電的問題;另一方面則是將晶體管的結構形態從二維層次突破到三維空間,提高了芯片的空間利用率。提出該結構的最終目的,是為了在單位面積內塞入更多的晶體管。

然而,隨著技術節點的進一步推進,FinFET結構也面臨越來越大的困難與挑戰。該結構的制備工藝十分復雜,會給工藝的穩定性方面帶來一定困擾,使漏電問題無法得到有效保障。相比于三面圍柵的FinFET結構,GAA技術采用的四面環柵結構,可以更好地抑制漏電流的形成和驅動電流的增大,更有利于實現性能和功耗之間的平衡。

但是,周鵬也指出:“工藝的不穩定問題對GAA結構來說也同樣存在,GAA和FinFET結構要解決的都是漏電問題。實現GAA工藝的難度并不比FinFET小,它的發展也需要一個技術改進的過程。GAA結構是在先進制程領域被普遍看好的工藝結構。但就目前5nm技術節點來說,不采用FinFET而采用GAA,仍是一個值得商榷的問題,畢竟GAA工藝也需要遵循一定的發展規律。”

摩爾定律將持續演進

芯片的制程越來越小,需要攻克的技術難點就越來越多,成本會變得越來越高昂,但這并不意味著摩爾定律將失效。芯片的制造工藝仍將不斷向更高制程演進。

對此,周鵬認為,芯片制程將跟隨摩爾定律的腳步不斷發展。盡管在發展的過程中,會面臨更多技術、成本帶來的問題,但是人們對芯片性能的追求已經超過了經濟成本的范疇。“在芯片發展的早期,人們面對的是一個經濟問題。這是因為集成電路芯片在發展初期,是一種需要盡快普及和應用的商業化產品,成本是其大規模應用和推廣時要面對的主要問題。每隔一段時間,單位面積的晶體管數量倍增,帶來的直接效應就是成本顯著降低。這推動了芯片的廣泛使用。尺寸微縮帶來的性能提升和功耗降低,也是為降低生產成本服務的。隨著芯片滲透至人類生活的方方面面,它已經不是可有可無的商品,而是一個必需品。人們對芯片的依賴程度越來越高,所以對芯片性能的要求已慢慢超過了對經濟成本的要求。人們愿意花更多的錢去體驗更好的性能。隨著技術天花板的到來,人們對性能的追求超過了經濟成本的范疇。”周鵬說道。

同時,周鵬認為,隨著芯片制程發展至5nm節點以下,晶體管溝道長度將進一步縮短,晶體管中電荷的量子遂穿效應將更容易實現。這些不受控制的隧穿電荷,將導致晶體管產生較大的漏電流,進而使得芯片的功耗問題變得更加嚴重。

當然,這些也不是無法攻克的難題。在未來的技術發展中,為了能夠更好地控制芯片功耗,具有更強溝道電流控制能力的GAA結構,將受到更多重視。事實上,早在三年前,三星便表示將在3nm制程中引入GAA技術,并計劃于2022年正式量產。臺積電也于去年宣稱,其在2nm制程研發中有重大突破,將選擇切入GAA技術。這些都能說明GAA技術在5nm節點之后的更小的制程中,會受到業界的普遍認可和青睞。

“但值得注意的是,在半導體領域當中,任何一種技術的迭代更新都需要經歷多年的試錯和改進。GAA結構雖然在5nm以下制程中具有較為明顯的優勢,但它是否能實現預期的高性能和低功耗,還要看其制程中面臨的技術難題能否被一一攻克。”周鵬說道。

芯片還將向更先進制程發展。只要將足夠的時間留給新技術去更新迭代,很多問題都會迎刃而解。
責任編輯:tzh

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 芯片
    +關注

    關注

    450

    文章

    49636

    瀏覽量

    417208
  • 半導體
    +關注

    關注

    334

    文章

    26331

    瀏覽量

    210066
  • 晶體管
    +關注

    關注

    77

    文章

    9502

    瀏覽量

    136943
  • 5G
    5G
    +關注

    關注

    1351

    文章

    48177

    瀏覽量

    560897
收藏 人收藏

    評論

    相關推薦

    性能殺手锏!臺積電3nm工藝迭代,新一代手機芯片交戰

    電子發燒友網報道(文/李彎彎)近日消息,聯發科、高通新一波5G手機旗艦芯片將于第四季推出,兩大廠新芯片都以臺積電3nm制程生產,近期進入投片
    的頭像 發表于 07-09 00:19 ?4748次閱讀

    手機芯片的歷史與發展

    手機芯片的歷史和由來
    的頭像 發表于 09-20 08:50 ?168次閱讀

    三星將為DeepX量產5nm AI芯片DX-M1

    人工智能半導體領域的創新者DeepX宣布,其第一代AI芯片DX-M1即將進入量產階段。這一里程碑式的進展得益于與三星電子代工設計公司Gaonchips的緊密合作。雙方已正式簽署量產合同,標志著DeepX的5nm芯片DX-M1將大
    的頭像 發表于 08-10 16:50 ?1009次閱讀

    消息稱臺積電3nm/5nm將漲價,終端產品或受影響

    據業內手機晶片領域的資深人士透露,臺積電計劃在明年1月1日起對旗下的先進工藝制程進行價格調整,特別是針對3nm5nm工藝制程,而其他工藝制程的價格則保持不變。此次漲價的具體幅度為,3nm
    的頭像 發表于 07-04 09:22 ?481次閱讀

    今日看點丨臺積電3納米助攻 Google自研手機芯片進入流片階段;傳豐田尋求在上海生產電動汽車

    1. 臺積電3 納米助攻 Google 自研手機芯片進入流片階段 ? 據報道,Google搭載于Pixel 10系列手機的Tensor G5芯片進入Tape-out(流片)階段。Ten
    發表于 07-01 10:41 ?537次閱讀

    TROQ創捷電子通過高芯片平臺認證

    創捷熱敏晶體38.4M成功通過 高通手機芯片/穿戴芯片平臺認證!
    的頭像 發表于 06-11 17:14 ?308次閱讀
    TROQ創捷電子通<b class='flag-5'>過高</b>通<b class='flag-5'>芯片</b>平臺認證

    阿里云攜手聯發科為手機芯片適配大模型

    聯發科,作為全球智能手機芯片市場的佼佼者,最近攜手阿里云取得了重大突破。聯發科在其旗艦芯片天璣9300上成功部署了通義千問大模型,這是首次在手機芯片端實現大模型的深度適配。這一技術革新意味著,即使在離線狀態下,通義千問也能流暢運
    的頭像 發表于 03-29 11:00 ?501次閱讀

    紫光展銳手機芯片2023年全球市場份額逆勢增長,表現優于行業

    進一步研究表明,紫光展銳在2023年第四季度的市場占有率達到了13%,出貨量環比增長24%。整體上,該公司成為了公開市場中同比增長最為迅速的手機芯片供應商之一。
    的頭像 發表于 03-21 16:09 ?1744次閱讀

    臺積電擴增3nm產能,部分5nm產能轉向該節點

    目前,蘋果、高通、聯發科等世界知名廠商已與臺積電能達成緊密合作,預示臺積電將繼續增加 5nm產能至該節點以滿足客戶需求,這標志著其在3nm制程領域已經超越競爭對手三星及英特爾。
    的頭像 發表于 03-19 14:09 ?469次閱讀

    手機芯片好壞對手機有什么影響

    手機芯片手機的核心組件,它的好壞對手機的性能、功能和用戶體驗有著直接的影響。
    的頭像 發表于 02-19 13:50 ?4933次閱讀

    未來在握:探究下一代手機芯片的前沿技術

    芯片架構是指芯片的內部設計和組織方式。在手機芯片中,主要包括中央處理單元(CPU)、圖形處理單元(GPU)、神經處理單元(NPU)等部分。每個部分都有其特定的任務,例如CPU處理日常計算任務,GPU負責圖形和視頻處理,而NPU則
    的頭像 發表于 12-06 11:37 ?928次閱讀
    未來在握:探究下一代<b class='flag-5'>手機芯片</b>的前沿技術

    2023年九款優秀的手機芯片處理器盤點

    手機芯片在電子設備中扮演著重要角色,它是運算和存儲的核心。手機芯片的重要組成部分包括處理器、觸控控制器芯片、無線IC、電源IC等。
    發表于 12-05 10:43 ?2016次閱讀
    2023年九款優秀的<b class='flag-5'>手機芯片</b>處理器盤點

    手機芯片焊接溫度是多少

    制造過程中,焊接溫度的控制是一個關鍵的技術環節,它直接影響著手機的質量、性能和可靠性。下面將從焊接過程、焊接溫度的影響、溫度控制等方面進行詳細的論述。 焊接溫度對手機芯片的影響非常大。首先,焊接溫度過高會導致
    的頭像 發表于 12-01 16:49 ?5128次閱讀

    3nm手機芯片的全新戰爭

    另一方面是芯片制造太燒錢,也只有一年就能賣出十多億臺的智能手機可以形成規模效應,不斷推動先進制程改進工藝、提高良率,得以讓服務器、PC、游戲主機甚至是汽車用上更先進的芯片制造技術。
    的頭像 發表于 10-18 15:40 ?904次閱讀
    3<b class='flag-5'>nm</b>,<b class='flag-5'>手機芯片</b>的全新戰爭

    麒麟a2芯片上市時間 麒麟a2芯片手機芯片

    手機芯片嗎 麒麟a2芯片手機芯片。麒麟A2是華為旗下的音頻芯片,麒麟A2芯片功耗相比上一代直
    的頭像 發表于 09-28 15:56 ?1855次閱讀