實例分割概念
圖像實例分割是在對象檢測的基礎上進一步細化,分離對象的前景與背景,實現像素級別的對象分離。所以圖像實例分割是基于對象檢測的基礎上進一步提升。圖像實例分割在目標檢測、人臉檢測、表情識別、醫學圖像處理與疾病輔助診斷、視頻監控與對象跟蹤、零售場景的貨架空缺識別等場景下均有應用。很多人會把圖像語義分割跟實例分割搞混淆,其實圖像的語義分割(Semantic Segmentation)與圖像的實例分割(Instance Segmentation)是兩個不同的概念,看下圖:
圖-1(來自COCO數據集論文)
左側是圖像語義分割的結果,幾個不同的類別人、羊、狗、背景分別用不同的顏色表示;右側是圖像實例分割的結果,對每只羊都用不同的顏色表示,而且把每個對象從背景中分離出來。這個就是語義分割跟實例分割的區別,直白點可以說就是語義分割是對每個類別、實例分割是針對每個對象(多個對象可能屬于同一個類別)。
常見的實例分割網絡
Mask-RCNN實例分割網絡
圖像實例分割是在對象檢測的基礎上再多出個基于ROI的分割分支,基于這樣思想的實例分割Mask-RCNN就是其經典代表,它的網絡結構如下:
圖-2(來自Mask-RCNN的論文)
Mask-RCNN可以簡單地認為是Faster-RCNN的基礎上加上一個實例分割分支。
RetinaMask實例分割網絡
RetinaMask可以看成RetinaNet對象檢測網絡跟Mask-RCNN實例分割網絡的兩個優勢組合,基于特征金字塔實現了更好的Mask預測,網絡結構圖示如下:
圖-3(來自RetinaMask論文)
PANet實例分割網絡
PANet主要工作是基于Mask-RCNN網絡上改進所得,作者通過改進Backbone部分提升了特征提取能力,通過自適應的池化操作得到更多融合特征,基于全鏈接融合產生mask,最終取得了比Mask-RCNN更好的實例分割效果,該模型的結構如下:
圖-4(來自PANet論文)
其中全鏈接特征融合mask分支如下圖:
圖-5(來自PANet論文)
YOLACT實例分割網絡
該實例分割網絡也是基于RetinaNet對象檢測網絡的基礎上,添加一個Mask分支,不過在添加Mask分支的時候它的Mask分支設計跟RetinaMask有所不同,該網絡的結構圖示如下:
圖-6(來自YOLACT作者論文)
CenterMask實例分割網絡
該實例網絡是基于FCOS對象檢測框架的基礎上,設計一個Mask分支輸出,該Mask分支被稱為空間注意力引導蒙板(Spatial Attention Guided Mask),該網絡的結構如下:
圖-7(來自CenterMask論文)
OpenVINO 支持Mask-RCNN模型
OpenVINO 中支持兩種實例分割模型分別是Mask-RCNN與YOLACT模型,其中Mask-RCNN模型支持來自英特爾官方庫文件、而YOLACT則來自公開的第三方提供。我們這里以官方的Mask-RCNN模型instance-segmentation-security-0050為例說明,該模型基于COCO數據集訓練,支持80個類別的實例分割,加上背景為81個類別。
OpenVINO 支持部署Faster-RCNN與Mask-RCNN網絡時候輸入的解析都是基于兩個輸入層,它們分別是:
im_data : NCHW=[1x3x480x480]
im_info: 1x3 三個值分別是H、W、Scale=1.0
輸出有四個,名稱與輸出格式及解釋如下:
name: classes, shape: [100, ] 預測的100個類別可能性,值在[0~1]之間
name: scores: shape: [100, ] 預測的100個Box可能性,值在[0~1]之間
name: boxes, shape: [100, 4] 預測的100個Box坐標,左上角與右下角,基于輸入的480x480
name: raw_masks, shape: [100, 81, 28, 28] Box ROI區域的實例分割輸出,81表示類別(包含背景),28x28表示ROI大小,注意:此模型輸出大小為14x14
模型實例分割代碼演示
因為模型的加載與推理部分的代碼跟前面系列文章的非常相似,這里就不再給出。代碼演示部分重點在輸出的解析,為了簡化,我用了兩個for循環設置了輸入與輸出數據精度,然后直接通過hardcode的輸出層名稱來獲取推理之后各個輸出層對應的數據部分,首先獲取類別,根據類別ID與Box的索引,直接獲取實例分割mask,然后隨機生成顏色,基于mask實現與原圖BOX ROI的疊加,產生了實例分割之后的效果輸出。解析部分的代碼首先需要獲取推理以后的數據,獲取數據的代碼如下:
float w_rate = static_cast
float h_rate = static_cast
auto scores = infer_request.GetBlob("scores");
auto boxes = infer_request.GetBlob("boxes");
auto clazzes = infer_request.GetBlob("classes");
auto raw_masks = infer_request.GetBlob("raw_masks");
const float* score_data = static_cast
const float* boxes_data = static_cast
const float* clazzes_data = static_cast
const auto raw_masks_data = static_cast
const SizeVector scores_outputDims = scores->getTensorDesc().getDims();
const SizeVector boxes_outputDims = boxes->getTensorDesc().getDims();
const SizeVector mask_outputDims = raw_masks->getTensorDesc().getDims();
const int max_count = scores_outputDims[0];
const int object_size = boxes_outputDims[1];
printf("mask NCHW=[%d, %d, %d, %d] ", mask_outputDims[0], mask_outputDims[1], mask_outputDims[2], mask_outputDims[3]);
int mask_h = mask_outputDims[2];
int mask_w = mask_outputDims[3];
size_t box_stride = mask_h * mask_w * mask_outputDims[1];
然后根據輸出數據格式開始解析Box框與Mask,這部分的代碼如下:
for (int n = 0; n < max_count; n++) {
float confidence = score_data[n];
float xmin = boxes_data[n*object_size] * w_rate;
float ymin = boxes_data[n*object_size + 1] * h_rate;
float xmax = boxes_data[n*object_size + 2] * w_rate;
float ymax = boxes_data[n*object_size + 3] * h_rate;
if (confidence > 0.5) {
cv::Scalar color(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
cv::Rect box;
float x1 = std::max(0.0f, xmin), static_cast
float y1 = std::max(0.0f, ymin), static_cast
float x2 = std::max(0.0f, xmax), static_cast
float y2 = std::max(0.0f, ymax), static_cast
box.x = static_cast
box.y = static_cast
box.width = static_cast
box.height = static_cast
int label = static_cast
std::cout << "confidence: " << confidence << " class name: " << coco_labels[label] << std::endl;
// 解析mask
float* mask_arr = raw_masks_data + box_stride * n + mask_h * mask_w * label;
cv::Mat mask_mat(mask_h, mask_w, CV_32FC1, mask_arr);
cv::Mat roi_img = src(box);
cv::Mat resized_mask_mat(box.height, box.width, CV_32FC1);
cv::resize(mask_mat, resized_mask_mat, cv::Size(box.width, box.height));
cv::Mat uchar_resized_mask(box.height, box.width, CV_8UC3, color);
roi_img.copyTo(uchar_resized_mask, resized_mask_mat <= 0.5);
cv::addWeighted(uchar_resized_mask, 0.7, roi_img, 0.3, 0.0f, roi_img);
cv::putText(src, coco_labels[label].c_str(), box.tl() + (box.br() - box.tl()) / 2, cv::FONT_HERSHEY_PLAIN, 1.0, cv::Scalar(0, 0, 255), 1, 8);
}
}
其中Mask部分的時候有個技巧的地方,首先獲取類別,然后根據類別,直接獲取Mask中對應的通道數據生成二值Mask圖像,添加上顏色,加權混合到ROI區域即可得到輸出結果。
責任編輯:lq6
-
圖像
+關注
關注
2文章
1083瀏覽量
40418
原文標題:OpenVINO? 實現圖像實例分割
文章出處:【微信號:英特爾物聯網,微信公眾號:英特爾物聯網】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論