精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

給予米勒循環和阿特金森循環的發動機配氣機構公差如何調節

立錡科技 ? 來源:汽車與新動力 ? 作者:汽車與新動力 ? 2021-08-09 09:28 ? 次閱讀

進氣歧管壓力測量可用于檢測特定發動機的實際氣門正時,從而可在線調節氣門關閉狀態,并與參考發動機進行有效匹配。這在很大程度上補償了由制造過程引起的進氣門和排氣門公差,并使發動機以最佳氣門正時運行。Vitesco Technologies公司正計劃將該方法用于量產發動機。

0 前言

_

為了不斷提高內燃機效率,發動機開發人員目前將研究重點放在米勒循環和阿特金森循環上。目前,渦輪增壓發動機更趨于采用米勒循環,與傳統運行策略相比,采用米勒循環能使整機效率提高約7.5%。

上述2種循環提升效率的主要原因在于通過發動機節流過程而降低了氣體交換損失,同時可使發動機氣缸在壓縮期間具有較低的平均壓力。此外,米勒循環和阿特金森循環可有效提高發動機壓縮比,從而使發動機在高負荷下的運行過程更加高效。

為了在實際條件下充分利用這些效率優勢,研究人員在采用米勒循環和阿特金森循環時須重點關注發動機氣門正時的精度。在典型的進氣門提前關閉點或延遲關閉點時,活塞運動速度會非常快。

因此,即便與正常的氣門關閉正時之間僅存在較小的偏差,也會使氣缸充量出現較大的差異。對其開展精確而深入的研究是實現降低排放和提高效率等目標的關鍵條件。由于制造公差的存在,當今量產發動機的進氣和排氣凸輪軸的氣門關閉時間差異可高達±5 °CA。

這會使發動機著火運行時的氣缸充量偏差高達25%。凸輪軸位置誤差不僅會使氣缸充量的計算過程不正確,還會使許多量產發動機無法以最佳的氣門正時運行,這不利于實現提高發動機效率及降低排放的目標。

Vitesco Technologies公司的目標是開發1種方法。通過該方法,研究人員只須采用當前量產發動機常用的傳感器,就可檢測發動機凸輪軸的位置(以測量發動機氣門關閉正時)。同時,該方法需要在發動機控制單元中得以有效應用,由此可避免因額外增加硬件而使系統成本提高,或對發動機制造過程產生不利影響。

基于壓力的凸輪軸角度匹配(PCAA)方法完全可以滿足上述要求。該方法由Vitesco Technologies公司開發,并已獲得了相關專利。PCAA方法能夠識別與制造相關的配氣機構公差,從而將進氣門位置精確控制在±1 °CA 以內,并將排氣門位置精確控制在±2 °CA 以內,由此可以更精準地確定和控制發動機的氣缸充量。

1 工作原理

在工作循環中,進氣門、排氣門和活塞之間的相互作用會對進氣歧管壓力變化產生影響,這是采用PCAA方法的物理基礎。研究人員通過GT-Power仿真模型確定了進氣門或排氣門正時偏移對進氣歧管壓力變化的影響。

該發動機某個氣缸的氣門升程曲線,黑色曲線為參考氣門正時,進氣凸輪軸的氣門正時偏移為-10 °CA,排氣凸輪軸的氣門正時偏移為+10 °CA。

圖2右側為相應的進氣歧管壓力曲線。顯然,進氣門和排氣門相對于活塞的位置會影響進氣歧管壓力曲線的形狀和時間位置。研究人員通過快速傅里葉變換(FFT)分析進氣歧管壓力曲線,從而計算出了各個階次(頻率)的相關振幅和相位。

最大振幅出現在4階,其等同于直列4缸發動機的進氣頻率。與其他階次所產生的背景噪聲相比,進氣頻率的倍數,即8階、12階、16階和20階,也具有明顯更高的振幅。通常而言,階次越高,振幅則會越低。

發動機進氣頻率決定了壓力曲線信號的形狀。因此,進氣頻率是進氣歧管壓力的激勵頻率。振幅大小表示該階次的信號在總信號中產生的影響。相位表示了該階次的振蕩在總信號中的時間分配。

為了量化氣門正時對進氣歧管壓力的影響,研究人員在6個進氣凸輪軸位置和6個排氣凸輪軸位置(36個測量點)的矩陣中調整了發動機凸輪軸的位置。這種變化涵蓋了量產發動機中出現的±5 °CA 配氣機構公差(偏離額定氣門正時)。

針對每個測量點,研究人員記錄下了進氣歧管壓力曲線及進氣門和排氣門位置,并進行了FFT分析。針對4階、8階、12階和16階的計算相位。

每個階次都有1個可根據氣門正時計算出的相位特征模式。通過上述方法,研究人員可在發動機各個氣門正時與基于各個階次而計算出的相位之間建立明確關系。

2 功能實施與驗證

_

PCAA方法充分利用了氣門正時與進氣歧管壓力波動相位之間的關系。通過在相應頻率范圍內分析進氣歧管壓力,研究人員可以檢測到各個氣門關閉正時對進氣歧管壓力形成的物理影響,并在發動機控制單元軟件中對此進行建模。

通過反轉計算模型,研究人員可將記錄的進氣歧管壓力曲線信息用于反向測算發動機的實際氣門正時。通過該方式,研究人員可檢測出參考發動機的實際氣門關閉正時與各個量產發動機的實際氣門關閉正時之間的偏差,并使此類數值得以量化,由此可使各個量產發動機的實際氣門正時與參考發動機實現合理匹配。

由此,研究人員可在確定各個發動機的氣缸實際進氣量時使誤差最小化,并以此為基礎對噴油量進行了調整,從而實現所需的空燃比。

另一方面,通過以該方式校正凸輪軸位置,研究人員可以將各個發動機的凸輪軸精確地調節到標準位置,并確保發動機在最佳的熱力學工況點運行。這種方法可以在很大程度上補償影響進氣側和排氣側的制造公差。

為了證明PCAA 方法的優勢,研究人員對5個工作循環中測得的進氣歧管壓力曲線進行了處理。研究人員針對上述36個測量點,通過該方法計算出參考發動機的凸輪軸位置,并與實際凸輪軸位置進行比較。

圖5 示出了在2 000 r/min的發動機轉速下,采用PCAA方法計算進氣和排氣凸輪軸位置所能達到的精度。經過測試的36個凸輪軸位置涵蓋了量產發動機的4階、8階、12階和16階相位的整個配氣機構公差范圍(±5 °CA)。

由此可知,對于進氣凸輪軸和排氣凸輪軸而言,每個測量點的偏差均小于±0.5 °CA。這一結果反映出PCAA方法具有很高的精度。圖6 示出在1 500~2 300 r/min轉速范圍內,采用PCAA方法計算出的進氣和排氣凸輪軸位置的標準偏差。在整個轉速范圍內,進氣凸輪軸的標準偏差均小于0.15 °CA。排氣凸輪軸的標準偏差略高,但始終保持在0.25 °CA 以下。

因此,該方法可以針對配氣機構的整個公差范圍及所考慮的轉速范圍,通過進氣歧管壓力曲線而精確地計算出進氣門和排氣門的實際關閉正時。

為了實現PCAA 方法的系列應用,Vitesco Technologies公司的研究人員開發并采用了其他功能模塊,以補償環境壓力和環境溫度的影響。在1 500~2 500 r/min轉速范圍內,研究人員均可通過在線控制單元使PCAA方法投入使用。

3 結語

_

通過PCAA 方法,研究人員可對各個氣門正時及其對進氣歧管壓力所產生的影響之間的物理關系進行精確建模,并將其用于氣門關閉正時的計算過程中。針對±5 °CA 的公差范圍,PCAA 方法能以非常高的精度補償特定參考發動機和量產發動機之間的氣門正時偏差。

采用Vitesco Technologies公司開發的PCAA方法,研究人員可以在不增加系統成本的情況下,充分利用米勒和阿特金森循環的技術優勢,從而為未來發動機提供1種經濟、高效的運行策略,以減少CO2排放。

PCAA方法將于近期應用于量產發動機,并實現可靠的適配精度。其中,進氣凸輪軸為±1 °CA,排氣凸輪軸為±2 °CA。

PCAA方法還在不斷優化中。一方面,研究人員通過將排氣壓力傳感器集成到PCAA算法中,以對發動機運行區域進行調節,并提高排氣凸輪軸的調節精度。另一方面,研究人員將重點放在功能擴展及專利申請上,以確定單個發動機的曲軸位置,以及V型和Boxer發動機的氣缸均衡性解決方案。

編輯:jq

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 發動機
    +關注

    關注

    33

    文章

    2440

    瀏覽量

    69169
  • FFT
    FFT
    +關注

    關注

    15

    文章

    434

    瀏覽量

    59313
  • PCAA
    +關注

    關注

    0

    文章

    3

    瀏覽量

    6067

原文標題:干貨|針對米勒循環和阿特金森循環的發動機配氣機構公差在線調節

文章出處:【微信號:RichtekTechnology,微信公眾號:立錡科技】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    柴油發動機構造與檢修

    電子發燒友網站提供《柴油發動機構造與檢修.pdf》資料免費下載
    發表于 10-14 13:58 ?0次下載

    直噴發動機和電噴發動機的區別

    直噴發動機和電噴發動機是現代汽車發動機的兩種主要燃油噴射技術。這兩種技術各有優勢和特點,它們在提高燃油效率、減少排放和提升駕駛性能方面都發揮著重要作用。 直噴發動機(Direct In
    的頭像 發表于 09-23 11:36 ?283次閱讀

    電控發動機的優點與工作原理

    隨著汽車工業的不斷發展和科技的進步,電控發動機逐漸成為現代汽車的核心部件。電控發動機以其高精度控制、高效能燃燒、低排放等優點,受到廣泛關注和青睞。本文將對電控發動機的優點和工作原理進行詳細的闡述,旨在為讀者提供全面的了解和認識。
    的頭像 發表于 06-20 11:33 ?896次閱讀

    全新混合動力思域即將上市,擁有強勁動力200匹馬力及315牛米扭矩

    關于混合動力系統的詳細信息尚未公開,但據了解,該系統由雙電機及一臺2.0升循環四缸發動機構
    的頭像 發表于 05-22 12:02 ?636次閱讀

    汽車不同的發動機的構造都有哪些不同?

    發動機之所以能源源不斷的提供動力,得益于氣缸內的進氣、壓縮、做功、排氣這四個行程的有條不紊地循環運作。
    發表于 04-02 11:01 ?360次閱讀
    汽車不同的<b class='flag-5'>發動機</b>的構造都有哪些不同?

    發動機冷卻風扇的工作原理

    這種控制溫度的液力變扭器式冷卻風扇,它能根據流過散熱器的空氣溫度變化,對冷卻風扇轉速進行調節。當溫度低時,風扇轉動速度較慢,這可以改善發動機預熱升溫條件,且可降低噪音,當發動機溫度升高后,風扇的轉速加快,這樣加速冷卻。
    發表于 03-13 11:34 ?626次閱讀

    一文詳解發動機的余熱發電技術

    發動機排氣余熱回收利用技術主要包括廢氣渦 輪增壓、采暖、廢氣再循環、改良燃料、余熱制冷、余熱發電等方式。目前廢氣渦輪增壓技術和廢氣再循環技術相對比較成熟。
    發表于 03-05 10:52 ?1121次閱讀

    發動機故障燈亮是什么原因 發動機故障燈閃爍是什么問題

    發動機故障燈亮是指車輛的發動機故障檢測系統發現了某種問題,并通過點亮儀表盤上的故障燈來提醒駕駛員。當發動機故障燈亮起時,駕駛員應立即停車并查找問題的原因。下面將詳細介紹一些常見的導致發動機
    的頭像 發表于 02-05 10:11 ?1472次閱讀

    發動機故障燈亮是什么原因 發動機管理系統主要由哪三個組成

    發動機故障燈亮的原因可以有很多。下面是一些常見的原因: 機械故障:當發動機的某個部件發生故障時,例如氣缸工作不正常、氣門失效、摩擦片磨損等,發動機管理系統會檢測到這些問題,并點亮故障燈。 電氣故障
    的頭像 發表于 01-25 10:12 ?678次閱讀

    飛機發動機盤點:飛機發動機類型有哪幾種

    渦輪噴氣發動機是目前大多數商用客機和軍用飛機所使用的發動機類型。它通過壓縮空氣、加入燃料并點燃,產生高速噴射的燃氣來產生推力。這種發動機通常具有高推力和高效率,能夠滿足大型客機的動力需求。
    的頭像 發表于 01-15 15:02 ?6448次閱讀

    汽車發動機cvvt、dvvt、vvt、VVT-i都是什么意思?

    豐田的VVT-i技術已經被廣泛的運用在旗下發動機上,它的主要原理是在凸輪軸上加裝一套液力機構,并通過ECU(發動機電腦)的控制,在一定角度范圍內對氣門的開啟、關閉時間進行調節,要么提前
    發表于 01-11 11:22 ?1139次閱讀
    汽車<b class='flag-5'>發動機</b>cvvt、dvvt、vvt、VVT-i都是什么意思?

    發動機內部構造解析

    現代汽車發動機機體組主要由機體、氣缸蓋、氣缸蓋罩、氣缸襯墊、主軸承蓋以及油底殼等組成。機體組是發動機的支架,是曲柄連桿機構氣機構
    的頭像 發表于 01-08 10:33 ?697次閱讀
    <b class='flag-5'>發動機</b>內部構造解析

    汽車發動機:六沖程發動機工作原理

    普通的四沖程發動機把3/4的能量以熱能的形式散發掉了。六沖程發動機則利用了部分散發的熱能去制造蒸汽以回收部分本來會損失的能量。
    發表于 12-27 11:39 ?695次閱讀
    汽車<b class='flag-5'>發動機</b>:六沖程<b class='flag-5'>發動機</b>工作原理

    奧迪發動機基礎機構

    [*附件:奧迪A4L 1.8TFSI發動機教案.ppt]() 喜歡此類型我會繼續更新
    發表于 12-08 10:07

    發動機基礎知識:汽車發動機分解圖

    發動機是汽車的靈魂,也是非常復雜的系統,不管好車壞車,發動機原理基本相同。今天給大家分享一下汽車發動機的分解圖,讓發動機不再神秘。
    發表于 11-28 10:05 ?1797次閱讀
    <b class='flag-5'>發動機</b>基礎知識:汽車<b class='flag-5'>發動機</b>分解圖