Python 是一種腳本語(yǔ)言,相比 C/C++ 這樣的編譯語(yǔ)言,在效率和性能方面存在一些不足。但是,有很多時(shí)候,Python 的效率并沒(méi)有想象中的那么夸張。本文對(duì)一些 Python 代碼加速運(yùn)行的技巧進(jìn)行整理。
0. 代碼優(yōu)化原則
本文會(huì)介紹不少的 Python 代碼加速運(yùn)行的技巧。在深入代碼優(yōu)化細(xì)節(jié)之前,需要了解一些代碼優(yōu)化基本原則。
第一個(gè)基本原則是不要過(guò)早優(yōu)化。很多人一開(kāi)始寫代碼就奔著性能優(yōu)化的目標(biāo),“讓正確的程序更快要比讓快速的程序正確容易得多”。因此,優(yōu)化的前提是代碼能正常工作。過(guò)早地進(jìn)行優(yōu)化可能會(huì)忽視對(duì)總體性能指標(biāo)的把握,在得到全局結(jié)果前不要主次顛倒。
第二個(gè)基本原則是權(quán)衡優(yōu)化的代價(jià)。優(yōu)化是有代價(jià)的,想解決所有性能的問(wèn)題是幾乎不可能的。通常面臨的選擇是時(shí)間換空間或空間換時(shí)間。另外,開(kāi)發(fā)代價(jià)也需要考慮。
第三個(gè)原則是不要優(yōu)化那些無(wú)關(guān)緊要的部分。如果對(duì)代碼的每一部分都去優(yōu)化,這些修改會(huì)使代碼難以閱讀和理解。如果你的代碼運(yùn)行速度很慢,首先要找到代碼運(yùn)行慢的位置,通常是內(nèi)部循環(huán),專注于運(yùn)行慢的地方進(jìn)行優(yōu)化。在其他地方,一點(diǎn)時(shí)間上的損失沒(méi)有什么影響。
1. 避免全局變量
#不推薦寫法。代碼耗時(shí):26.8秒
importmath
size=10000
forxinrange(size):
foryinrange(size):
z=math.sqrt(x)+math.sqrt(y)
許多程序員剛開(kāi)始會(huì)用 Python 語(yǔ)言寫一些簡(jiǎn)單的腳本,當(dāng)編寫腳本時(shí),通常習(xí)慣了直接將其寫為全局變量,例如上面的代碼。但是,由于全局變量和局部變量實(shí)現(xiàn)方式不同,定義在全局范圍內(nèi)的代碼運(yùn)行速度會(huì)比定義在函數(shù)中的慢不少。通過(guò)將腳本語(yǔ)句放入到函數(shù)中,通常可帶來(lái) 15% - 30% 的速度提升。
#推薦寫法。代碼耗時(shí):20.6秒
importmath
defmain():#定義到函數(shù)中,以減少全部變量使用
size=10000
forxinrange(size):
foryinrange(size):
z=math.sqrt(x)+math.sqrt(y)
main()
2. 避免.
2.1 避免模塊和函數(shù)屬性訪問(wèn)
#不推薦寫法。代碼耗時(shí):14.5秒
importmath
defcomputeSqrt(size:int):
result=[]
foriinrange(size):
result.append(math.sqrt(i))
returnresult
defmain():
size=10000
for_inrange(size):
result=computeSqrt(size)
main()
每次使用.
(屬性訪問(wèn)操作符時(shí))會(huì)觸發(fā)特定的方法,如__getattribute__()
和__getattr__()
,這些方法會(huì)進(jìn)行字典操作,因此會(huì)帶來(lái)額外的時(shí)間開(kāi)銷。通過(guò)from import
語(yǔ)句,可以消除屬性訪問(wèn)。
#第一次優(yōu)化寫法。代碼耗時(shí):10.9秒
frommathimportsqrt
defcomputeSqrt(size:int):
result=[]
foriinrange(size):
result.append(sqrt(i))#避免math.sqrt的使用
returnresult
defmain():
size=10000
for_inrange(size):
result=computeSqrt(size)
main()
在第 1 節(jié)中我們講到,局部變量的查找會(huì)比全局變量更快,因此對(duì)于頻繁訪問(wèn)的變量sqrt
,通過(guò)將其改為局部變量可以加速運(yùn)行。
#第二次優(yōu)化寫法。代碼耗時(shí):9.9秒
importmath
defcomputeSqrt(size:int):
result=[]
sqrt=math.sqrt#賦值給局部變量
foriinrange(size):
result.append(sqrt(i))#避免math.sqrt的使用
returnresult
defmain():
size=10000
for_inrange(size):
result=computeSqrt(size)
main()
除了math.sqrt
外,computeSqrt
函數(shù)中還有.
的存在,那就是調(diào)用list
的append
方法。通過(guò)將該方法賦值給一個(gè)局部變量,可以徹底消除computeSqrt
函數(shù)中for
循環(huán)內(nèi)部的.
使用。
#推薦寫法。代碼耗時(shí):7.9秒
importmath
defcomputeSqrt(size:int):
result=[]
append=result.append
sqrt=math.sqrt#賦值給局部變量
foriinrange(size):
append(sqrt(i))#避免result.append和math.sqrt的使用
returnresult
defmain():
size=10000
for_inrange(size):
result=computeSqrt(size)
main()
2.2 避免類內(nèi)屬性訪問(wèn)
#不推薦寫法。代碼耗時(shí):10.4秒
importmath
fromtypingimportList
classDemoClass:
def__init__(self,value:int):
self._value=value
defcomputeSqrt(self,size:int)->List[float]:
result=[]
append=result.append
sqrt=math.sqrt
for_inrange(size):
append(sqrt(self._value))
returnresult
defmain():
size=10000
for_inrange(size):
demo_instance=DemoClass(size)
result=demo_instance.computeSqrt(size)
main()
避免.
的原則也適用于類內(nèi)屬性,訪問(wèn)self._value
的速度會(huì)比訪問(wèn)一個(gè)局部變量更慢一些。通過(guò)將需要頻繁訪問(wèn)的類內(nèi)屬性賦值給一個(gè)局部變量,可以提升代碼運(yùn)行速度。
#推薦寫法。代碼耗時(shí):8.0秒
importmath
fromtypingimportList
classDemoClass:
def__init__(self,value:int):
self._value=value
defcomputeSqrt(self,size:int)->List[float]:
result=[]
append=result.append
sqrt=math.sqrt
value=self._value
for_inrange(size):
append(sqrt(value))#避免self._value的使用
returnresult
defmain():
size=10000
for_inrange(size):
demo_instance=DemoClass(size)
demo_instance.computeSqrt(size)
main()
3. 避免不必要的抽象
#不推薦寫法,代碼耗時(shí):0.55秒
classDemoClass:
def__init__(self,value:int):
self.value=value
@property
defvalue(self)->int:
returnself._value
@value.setter
defvalue(self,x:int):
self._value=x
defmain():
size=1000000
foriinrange(size):
demo_instance=DemoClass(size)
value=demo_instance.value
demo_instance.value=i
main()
任何時(shí)候當(dāng)你使用額外的處理層(比如裝飾器、屬性訪問(wèn)、描述器)去包裝代碼時(shí),都會(huì)讓代碼變慢。大部分情況下,需要重新進(jìn)行審視使用屬性訪問(wèn)器的定義是否有必要,使用getter/setter
函數(shù)對(duì)屬性進(jìn)行訪問(wèn)通常是 C/C++ 程序員遺留下來(lái)的代碼風(fēng)格。如果真的沒(méi)有必要,就使用簡(jiǎn)單屬性。
#推薦寫法,代碼耗時(shí):0.33秒
classDemoClass:
def__init__(self,value:int):
self.value=value#避免不必要的屬性訪問(wèn)器
defmain():
size=1000000
foriinrange(size):
demo_instance=DemoClass(size)
value=demo_instance.value
demo_instance.value=i
main()
4. 避免數(shù)據(jù)復(fù)制
4.1 避免無(wú)意義的數(shù)據(jù)復(fù)制
#不推薦寫法,代碼耗時(shí):6.5秒
defmain():
size=10000
for_inrange(size):
value=range(size)
value_list=[xforxinvalue]
square_list=[x*xforxinvalue_list]
main()
上面的代碼中value_list
完全沒(méi)有必要,這會(huì)創(chuàng)建不必要的數(shù)據(jù)結(jié)構(gòu)或復(fù)制。
#推薦寫法,代碼耗時(shí):4.8秒
defmain():
size=10000
for_inrange(size):
value=range(size)
square_list=[x*xforxinvalue]#避免無(wú)意義的復(fù)制
main()
另外一種情況是對(duì) Python 的數(shù)據(jù)共享機(jī)制過(guò)于偏執(zhí),并沒(méi)有很好地理解或信任 Python 的內(nèi)存模型,濫用 copy.deepcopy()
之類的函數(shù)。通常在這些代碼中是可以去掉復(fù)制操作的。
4.2 交換值時(shí)不使用中間變量
不推薦寫法,代碼耗時(shí):0.07秒
#不推薦寫法,代碼耗時(shí):0.07秒
defmain():
size=1000000
for_inrange(size):
a=3
b=5
temp=a
a=b
b=temp
main()
上面的代碼在交換值時(shí)創(chuàng)建了一個(gè)臨時(shí)變量temp
,如果不借助中間變量,代碼更為簡(jiǎn)潔、且運(yùn)行速度更快。
#推薦寫法,代碼耗時(shí):0.06秒
defmain():
size=1000000
for_inrange(size):
a=3
b=5
a,b=b,a#不借助中間變量
main()
4.3 字符串拼接用join
而不是+
#不推薦寫法,代碼耗時(shí):2.6秒
importstring
fromtypingimportList
defconcatString(string_list:List[str])->str:
result=''
forstr_iinstring_list:
result+=str_i
returnresult
defmain():
string_list=list(string.ascii_letters*100)
for_inrange(10000):
result=concatString(string_list)
main()
當(dāng)使用a + b
拼接字符串時(shí),由于 Python 中字符串是不可變對(duì)象,其會(huì)申請(qǐng)一塊內(nèi)存空間,將a
和b
分別復(fù)制到該新申請(qǐng)的內(nèi)存空間中。因此,如果要拼接 n
個(gè)字符串,會(huì)產(chǎn)生 n-1
個(gè)中間結(jié)果,每產(chǎn)生一個(gè)中間結(jié)果都需要申請(qǐng)和復(fù)制一次內(nèi)存,嚴(yán)重影響運(yùn)行效率。而使用join()
拼接字符串時(shí),會(huì)首先計(jì)算出需要申請(qǐng)的總的內(nèi)存空間,然后一次性地申請(qǐng)所需內(nèi)存,并將每個(gè)字符串元素復(fù)制到該內(nèi)存中去。
#推薦寫法,代碼耗時(shí):0.3秒
importstring
fromtypingimportList
defconcatString(string_list:List[str])->str:
return''.join(string_list)#使用join而不是+
defmain():
string_list=list(string.ascii_letters*100)
for_inrange(10000):
result=concatString(string_list)
main()
5. 利用if
條件的短路特性
#不推薦寫法,代碼耗時(shí):0.05秒
fromtypingimportList
defconcatString(string_list:List[str])->str:
abbreviations={'cf.','e.g.','ex.','etc.','flg.','i.e.','Mr.','vs.'}
abbr_count=0
result=''
forstr_iinstring_list:
ifstr_iinabbreviations:
result+=str_i
returnresult
defmain():
for_inrange(10000):
string_list=['Mr.','Hat','is','Chasing','the','black','cat','.']
result=concatString(string_list)
main()
if
條件的短路特性是指對(duì)if a and b
這樣的語(yǔ)句, 當(dāng)a
為False
時(shí)將直接返回,不再計(jì)算b
;對(duì)于if a or b
這樣的語(yǔ)句,當(dāng)a
為True
時(shí)將直接返回,不再計(jì)算b
。因此, 為了節(jié)約運(yùn)行時(shí)間,對(duì)于or
語(yǔ)句,應(yīng)該將值為True
可能性比較高的變量寫在or
前,而and
應(yīng)該推后。
#推薦寫法,代碼耗時(shí):0.03秒
fromtypingimportList
defconcatString(string_list:List[str])->str:
abbreviations={'cf.','e.g.','ex.','etc.','flg.','i.e.','Mr.','vs.'}
abbr_count=0
result=''
forstr_iinstring_list:
ifstr_i[-1]=='.'andstr_iinabbreviations:#利用if條件的短路特性
result+=str_i
returnresult
defmain():
for_inrange(10000):
string_list=['Mr.','Hat','is','Chasing','the','black','cat','.']
result=concatString(string_list)
main()
6. 循環(huán)優(yōu)化
6.1 用for
循環(huán)代替while
循環(huán)
#不推薦寫法。代碼耗時(shí):6.7秒
defcomputeSum(size:int)->int:
sum_=0
i=0
whilei1
returnsum_
defmain():
size=10000
for_inrange(size):
sum_=computeSum(size)
main()
Python 的for
循環(huán)比while
循環(huán)快不少。
#推薦寫法。代碼耗時(shí):4.3秒
defcomputeSum(size:int)->int:
sum_=0
foriinrange(size):#for循環(huán)代替while循環(huán)
sum_+=i
returnsum_
defmain():
size=10000
for_inrange(size):
sum_=computeSum(size)
main()
6.2 使用隱式for
循環(huán)代替顯式for
循環(huán)
針對(duì)上面的例子,更進(jìn)一步可以用隱式for
循環(huán)來(lái)替代顯式for
循環(huán)
#推薦寫法。代碼耗時(shí):1.7秒
defcomputeSum(size:int)->int:
returnsum(range(size))#隱式for循環(huán)代替顯式for循環(huán)
defmain():
size=10000
for_inrange(size):
sum=computeSum(size)
main()
6.3 減少內(nèi)層for
循環(huán)的計(jì)算
#不推薦寫法。代碼耗時(shí):12.8秒
importmath
defmain():
size=10000
sqrt=math.sqrt
forxinrange(size):
foryinrange(size):
z=sqrt(x)+sqrt(y)
main()
上面的代碼中sqrt(x)
位于內(nèi)側(cè)for
循環(huán), 每次訓(xùn)練過(guò)程中都會(huì)重新計(jì)算一次,增加了時(shí)間開(kāi)銷。
#推薦寫法。代碼耗時(shí):7.0秒
importmath
defmain():
size=10000
sqrt=math.sqrt
forxinrange(size):
sqrt_x=sqrt(x)#減少內(nèi)層for循環(huán)的計(jì)算
foryinrange(size):
z=sqrt_x+sqrt(y)
main()
7. 使用numba.jit
我們沿用上面介紹過(guò)的例子,在此基礎(chǔ)上使用numba.jit
。 numba
可以將 Python 函數(shù) JIT 編譯為機(jī)器碼執(zhí)行,大大提高代碼運(yùn)行速度。關(guān)于numba
的更多信息見(jiàn)下面的主頁(yè):
http://numba.pydata.org/numba.pydata.org/
#推薦寫法。代碼耗時(shí):0.62秒
importnumba
@numba.jit
defcomputeSum(size:float)->int:
sum=0
foriinrange(size):
sum+=i
returnsum
defmain():
size=10000
for_inrange(size):
sum=computeSum(size)
main()
8. 選擇合適的數(shù)據(jù)結(jié)構(gòu)
Python 內(nèi)置的數(shù)據(jù)結(jié)構(gòu)如str
, tuple
, list
, set
, dict
底層都是 C 實(shí)現(xiàn)的,速度非常快,自己實(shí)現(xiàn)新的數(shù)據(jù)結(jié)構(gòu)想在性能上達(dá)到內(nèi)置的速度幾乎是不可能的。
list
類似于 C++ 中的std::vector
,是一種動(dòng)態(tài)數(shù)組。其會(huì)預(yù)分配一定內(nèi)存空間,當(dāng)預(yù)分配的內(nèi)存空間用完,又繼續(xù)向其中添加元素時(shí),會(huì)申請(qǐng)一塊更大的內(nèi)存空間,然后將原有的所有元素都復(fù)制過(guò)去,之后銷毀之前的內(nèi)存空間,再插入新元素。刪除元素時(shí)操作類似,當(dāng)已使用內(nèi)存空間比預(yù)分配內(nèi)存空間的一半還少時(shí),會(huì)另外申請(qǐng)一塊小內(nèi)存,做一次元素復(fù)制,之后銷毀原有大內(nèi)存空間。因此,如果有頻繁的新增、刪除操作,新增、刪除的元素?cái)?shù)量又很多時(shí),list的效率不高。此時(shí),應(yīng)該考慮使用collections.deque
。collections.deque
是雙端隊(duì)列,同時(shí)具備棧和隊(duì)列的特性,能夠在兩端進(jìn)行 O(1)
復(fù)雜度的插入和刪除操作。
list
的查找操作也非常耗時(shí)。當(dāng)需要在list
頻繁查找某些元素,或頻繁有序訪問(wèn)這些元素時(shí),可以使用bisect
維護(hù)list
對(duì)象有序并在其中進(jìn)行二分查找,提升查找的效率。
另外一個(gè)常見(jiàn)需求是查找極小值或極大值,此時(shí)可以使用heapq
模塊將list
轉(zhuǎn)化為一個(gè)堆,使得獲取最小值的時(shí)間復(fù)雜度是 O(1)
。
-
函數(shù)
+關(guān)注
關(guān)注
3文章
4307瀏覽量
62433 -
C++
+關(guān)注
關(guān)注
22文章
2104瀏覽量
73498 -
代碼
+關(guān)注
關(guān)注
30文章
4751瀏覽量
68358 -
python
+關(guān)注
關(guān)注
56文章
4782瀏覽量
84460
原文標(biāo)題:Python 加速運(yùn)行技巧
文章出處:【微信號(hào):LinuxHub,微信公眾號(hào):Linux愛(ài)好者】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論