精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

二叉排序樹AVL如何實現(xiàn)動態(tài)平衡

算法與數(shù)據(jù)結(jié)構(gòu) ? 來源:bigsai ? 作者:bigsai ? 2021-10-28 17:02 ? 次閱讀

什么是AVL樹

大家好,我是bigsai,好久不見,甚是想念,今天給大家講講AVL樹。

對于樹這種數(shù)據(jù)結(jié)構(gòu),想必大家也已經(jīng)不再陌生,我們簡單回顧一下。

在樹的種類中,通常分成二叉樹和多叉樹,我們熟悉的二叉樹種類有二叉搜索(排序、查找)樹、二叉平衡樹、伸展樹、紅黑樹等等。而熟悉的多叉樹像B樹、字典樹都是經(jīng)典多叉樹。

普通的二叉樹,我們研究其遍歷方式,因為其沒啥規(guī)則約束查找和插入都很隨意所以很少有研究價值。

但是二叉樹結(jié)構(gòu)上很有特點:左孩子和右孩子,兩個不同方向的孩子對應(yīng)二進制的01,判斷的對錯,比較的大小,所以根據(jù)這個結(jié)構(gòu)所有樹左側(cè)節(jié)點比父節(jié)點小,右側(cè)節(jié)點比父節(jié)點大,這時候就誕生了二叉搜索(排序)樹。二叉搜索(排序)樹的一大特點就是查找效率提高了,因為查找一個元素位置或者查看元素是否存在通過每遇到一個節(jié)點直接進行比較就可以一步步逼近結(jié)果的位置。

但二叉搜索(排序樹)有個很大的問題就是當(dāng)插入節(jié)點很有序,很可能成為一棵斜樹或者深度很高,那么這樣的一個查找效率還是趨近于線性O(shè)(n)級別,所以這種情況二叉搜索(排序)樹的效率是比較低的。

所以,人們有個期望:對一棵樹來說插入節(jié)點,小的還在左面,大的還在右面方便查找,但是能不能不要出現(xiàn)那么斜的情況?

這不,平衡二叉搜索(AVL)樹就是這么干的,AVL在插入的時候每次都會旋轉(zhuǎn)自平衡,讓整個樹一直處于平衡狀態(tài),讓整個樹的查詢更加穩(wěn)定(logN)。我們首先來看一下什么是AVL樹:

  • AVL樹是帶有平衡條件的二叉搜索樹,這個平衡條件必須要容易保持,而且要保證它的深度是O(logN)。

  • AVL的左右子樹的高度差(平衡因子)不大于1,并且它的每個子樹也都是平衡二叉樹。

  • 對于平衡二叉樹的最小個數(shù),n0=0;n1=1;nk=n(k-1)+n(k-2)+1;(求法可以類比斐波那契)

難點:AVL是一顆二叉排序樹,用什么樣的規(guī)則或者規(guī)律讓它能夠在復(fù)雜度不太高的情況下實現(xiàn)動態(tài)平衡呢?

不平衡情況

如果從簡單情況模型看,其實四種不平衡情況很簡單,分別是RR,LL,RL,LR四種不平衡情況。

然后將其平衡的結(jié)果也很容易(不考慮其附帶節(jié)點只看結(jié)果),將中間大小數(shù)值移動最上方,其他相對位置不變即可:

當(dāng)然,這個僅僅是針對三個節(jié)點情況太過于理想化了,很多時候讓你找不平衡的點,或者我們在解決不平衡的時候,我們需要的就是找到第一個不平衡(從底往上)的點將其平衡即可,下面列舉兩個不平衡的例子:

上述四種不平衡條件情況,可能出現(xiàn)在底部,也可能出現(xiàn)在頭,也可能出現(xiàn)在某個中間節(jié)點導(dǎo)致不平衡,而我們只需要研究其首次不平衡點,解決之后整棵樹即繼續(xù)平衡,在具體的處理上我們使用遞歸的方式解決問題。

四種不平衡情況處理

針對四種不平衡的情況,這里對每種情況進行詳細的講解。

RR平衡旋轉(zhuǎn)(左單旋轉(zhuǎn))

這里的RR指的是節(jié)點模型的樣子,其含義是需要左單旋轉(zhuǎn)(記憶時候需要注意一下RR不是右旋轉(zhuǎn))!

出現(xiàn)這種情況的原因是節(jié)點的右側(cè)的右側(cè)較深這時候不平衡節(jié)點需要左旋,再細看過程。

  • 在左旋的過程中,root(oldroot)節(jié)點下沉,中間節(jié)點(newroot)上浮.而其中中間節(jié)點(newroot)的右側(cè)依然不變。

  • 它上浮左側(cè)所以需要指向根節(jié)點(oldroot)(畢竟一棵樹)。但是這樣newroot原來左側(cè)節(jié)點H空缺。而我們需要仍然讓整個樹完整并且滿足二叉排序樹的規(guī)則

  • 而剛好本來oldroot右側(cè)指向newroot現(xiàn)在結(jié)構(gòu)改變oldroot右側(cè)空缺,剛好這個位置滿足在oldroot的右側(cè),在newroot的左側(cè),所以我們將H插入在這個位置。

  • 其中H可能為NULL,不過不影響操作!

其更詳細流程為:

而左旋的代碼可以表示為:

privatenodegetRRbanlance(nodeoldroot){//右右深,需要左旋
//TODOAuto-generatedmethodstub
nodenewroot=oldroot.right;
oldroot.right=newroot.left;
newroot.left=oldroot;
oldroot.height=Math.max(getHeight(oldroot.left),getHeight(oldroot.right))+1;
newroot.height=Math.max(getHeight(newroot.left),getHeight(newroot.right))+1;//原來的root的高度需要從新計算
returnnewroot;
}

LL平衡旋轉(zhuǎn)(右單旋轉(zhuǎn))

而右旋和左旋相反,但是思路相同,根據(jù)上述進行替換即可!


代碼:

privatenodegetLLbanlance(nodeoldroot){//LL小,需要右旋轉(zhuǎn)
//TODOAuto-generatedmethodstub
nodenewroot=oldroot.left;
oldroot.left=newroot.right;
newroot.right=oldroot;
oldroot.height=Math.max(getHeight(oldroot.left),getHeight(oldroot.right))+1;
newroot.height=Math.max(getHeight(newroot.left),getHeight(newroot.right))+1;//原來的root的高度需要從新金酸
returnnewroot;
}

RL平衡旋轉(zhuǎn)(先右后左雙旋轉(zhuǎn))

這個RL你可能有點懵圈,為啥RR叫左旋,LL叫右旋,這個RL怎么就叫先右后左旋轉(zhuǎn)了?

別急別急,這個之所以先后后左,是因為具體需要中間節(jié)點右旋一次,然后上面節(jié)點左旋一次才能平衡,具體可以下面慢慢看。

首先產(chǎn)生這種不平衡的條件原因是:ROOT節(jié)點右側(cè)左側(cè)節(jié)點的深度高些,使得與左側(cè)的差大于1,這個與我們前面看到的左旋右旋不同因為旋轉(zhuǎn)一次無法達到平衡!

對于右左結(jié)構(gòu),中間(R)的最大,兩側(cè)(ROOT,R.L)的最小,但是下面(R.L)的比上面(ROOT)大(R.LROOT右側(cè))所以如果平衡的話,那么R.L應(yīng)該在中間,而R應(yīng)該在右側(cè),原來的ROOT在左側(cè)。

這個過程節(jié)點的變化浮動比較大,需要妥善處理各個子節(jié)點的移動使其滿足二叉排序樹的性質(zhì)!

這種雙旋轉(zhuǎn)具體實現(xiàn)其實也不難,不要被外表唬住,這里面雙旋轉(zhuǎn)我提供兩種解答方法。


思路(標準答案)1:兩次旋轉(zhuǎn)RR,LL

這個處理起來非常容易,因為前面已經(jīng)解決RR(左旋),LL(右旋)的問題,所以這里面在上面基礎(chǔ)上可以直接解決,首先對R節(jié)點進行一次LL右旋,旋轉(zhuǎn)一次之后R在最右側(cè),這就轉(zhuǎn)化成RR不平衡旋轉(zhuǎn)的問題了,所以這個時候以ROOT開始一次RR左旋即可完成平衡,具體流程可以參考下面這張圖。

思路(個人方法)2:直接分析

根據(jù)初始和結(jié)果的狀態(tài),然后分析各個節(jié)點變化順序=,手動操作這些節(jié)點即可。其實不管你怎么操作,只要能滿足最后結(jié)構(gòu)一致就行啦!

首先根據(jù)ROOT,R,R.L三個節(jié)點變化,R.L肯定要在最頂層,左右分別指向ROOT和R,那么這其中R.leftROOT.right發(fā)生變化(原來分別是R.L和R)暫時為空。而剛好根據(jù)左右大小關(guān)系可以補上R.L原來的孩子節(jié)點AB

代碼為:(注釋部分為方案1)

privatenodegetRLbanlance(nodeoldroot){//右左深
//nodenewroot=oldroot.right.left;
//oldroot.right.left=newroot.right;
//newroot.right=oldroot.right;
//oldroot.right=newroot.left;
//newroot.left=oldroot;
//oldroot.height=Math.max(getHeight(oldroot.left),getHeight(oldroot.right))+1;
//newroot.right.height=Math.max(getHeight(newroot.right.left),getHeight(newroot.right.right))+1;
//newroot.height=Math.max(getHeight(oldroot.left),getHeight(newroot.right))+1;//原來的root的高度需要從新金酸
oldroot.right=getLLbanlance(oldroot.right);
oldroot.height=Math.max(getHeight(oldroot.left),getHeight(oldroot.right))+1;
returngetRRbanlance(oldroot);

}

LR平衡旋轉(zhuǎn)(先左后右雙旋轉(zhuǎn))

這個情況和RL情況相似,采取相同操作即可。

根據(jù)上述RL修改即可

這部分代碼為

privatenodegetLRbanlance(nodeoldroot){
oldroot.left=getRRbanlance(oldroot.left);
oldroot.height=Math.max(getHeight(oldroot.left),getHeight(oldroot.right))+1;
returngetLLbanlance(oldroot);

}

代碼實現(xiàn)

首先對于節(jié)點多個height屬性。用于計算高度(平衡因子)

插入是遞歸插入,遞歸是一個來回的過程,去的過程進行插入,回的過程進行高度更新,和檢查是否平衡。推薦不要寫全局遞歸計算高度,效率太低下,事實上高度變化只和插入和平衡有關(guān),仔細考慮即不會有疏漏!

代碼寫的比較早,如有命名不規(guī)范的情況,還請勿噴,如果有疏漏還請指出!

importjava.util.ArrayDeque;
importjava.util.Queue;

publicclassAVLTree{

classnode
{
intvalue;
nodeleft;
noderight;
intheight;
publicnode(){

}
publicnode(intvalue)
{
this.value=value;
this.height=0;
}
publicnode(intvalue,nodeleft,noderight)
{
this.value=value;
this.left=left;this.right=right;
this.height=0;
}
}
noderoot;//根

publicAVLTree(){
this.root=null;
}

publicbooleanisContains(intx)//是否存在
{
nodecurrent=root;
if(root==null){
returnfalse;
}
while(current.value!=x&¤t!=null){
if(xif(x>current.value){
current=current.right;
}
if(current==null){
returnfalse;
}//在里面判斷如果超直接返回
}
//如果在這個位置判斷是否為空會導(dǎo)致current.value不存在報錯
if(current.value==x){
returntrue;
}
returnfalse;
}

publicintgetHeight(nodet)
{
if(t==null){return-1;}//
returnt.height;
//return1+Math.max(getHeight(t.left),getHeight(t.right));這種效率太低
}
publicvoidcengxu(nodet){//層序遍歷
Queueq1=newArrayDeque();
if(t==null)
return;
if(t!=null){
q1.add(t);
}
while(!q1.isEmpty()){
nodet1=q1.poll();
if(t1.left!=null)
q1.add(t1.left);
if(t1.right!=null)
q1.add(t1.right);
System.out.print(t1.value+"");
}
System.out.println();
}
publicvoidzhongxu(nodet)//中序遍歷中序遍歷:左子樹--->根結(jié)點--->右子樹
{//為了測試改成中后都行
if(t!=null)
{
zhongxu(t.left);
System.out.print(t.value+"");//訪問完左節(jié)點訪問當(dāng)前節(jié)點
zhongxu(t.right);
//System.out.print(t.value+"");//訪問完左節(jié)點訪問當(dāng)前節(jié)點
}
}
publicvoidqianxu(nodet)//前序遞歸前序遍歷:根結(jié)點--->左子樹--->右子樹
{
if(t!=null){
System.out.print(t.value+"");//當(dāng)前節(jié)點
qianxu(t.left);
qianxu(t.right);}
}
publicvoidinsert(intvalue){
root=insert(value,root);
}
publicnodeinsert(intx,nodet)//插入t是root的引用
{
nodea1=newnode(x);
//if(root==null){root=a1;returnroot;}
if(t==null){returna1;}
//插入操作。遞歸實現(xiàn)
elseif(t!=null)
{
if(xelse
{t.right=insert(x,t.right);}
}
/*
*更新當(dāng)前節(jié)點的高度,因為整個插入只有被插入的一方有影響,
*所以遞歸會更新好最底層的,上層可直接調(diào)用
*/
t.height=Math.max(getHeight(t.left),getHeight(t.right))+1;//不要寫成遞歸,遞歸效率低
returnbanlance(t);//因為java對象傳參機制,需要克隆,不可直接t=xx否則變換
}

privatenodebanlance(nodet){
//TODOAuto-generatedmethodstub
//if(t==null)returnnull;
intlefthigh=getHeight(t.left);
intrighthigh=getHeight(t.right);
if(Math.abs(lefthigh-righthigh)<=1)//不需要平衡滴
{returnt;}
elseif(lefthigh//右側(cè)大
{
if(getHeight(t.right.left)//RR需要左旋
{
returngetRRbanlance(t);
}
else{
returngetRLbanlance(t);
}
}
else{
if(getHeight(t.left.left)>getHeight(t.left.right))//ll左左
{
returngetLLbanlance(t);
}
else{
returngetLRbanlance(t);
}
}
}
/*
*oldroot(平衡因子為2,不平衡)==>newroot
*//
*Bnewroot(平衡因子為1)oldrootD
*//
*CDBCE
*
*E
*/

privatenodegetRRbanlance(nodeoldroot){//右右深,需要左旋
//TODOAuto-generatedmethodstub
nodenewroot=oldroot.right;
oldroot.right=newroot.left;
newroot.left=oldroot;
oldroot.height=Math.max(getHeight(oldroot.left),getHeight(oldroot.right))+1;
newroot.height=Math.max(getHeight(newroot.left),getHeight(newroot.right))+1;//原來的root的高度需要從新計算
returnnewroot;
}
/*
*右旋同理
*/
privatenodegetLLbanlance(nodeoldroot){//LL小,需要右旋轉(zhuǎn)
//TODOAuto-generatedmethodstub
nodenewroot=oldroot.left;
oldroot.left=newroot.right;
newroot.right=oldroot;
oldroot.height=Math.max(getHeight(oldroot.left),getHeight(oldroot.right))+1;
newroot.height=Math.max(getHeight(newroot.left),getHeight(newroot.right))+1;//原來的root的高度需要從新金酸
returnnewroot;
}

privatenodegetLRbanlance(nodeoldroot){
oldroot.left=getRRbanlance(oldroot.left);
oldroot.height=Math.max(getHeight(oldroot.left),getHeight(oldroot.right))+1;
returngetLLbanlance(oldroot);

}

/*(不平衡出現(xiàn)在右左節(jié)點)
*oldroot==>newroot
*//
*ABoldrootB
*///
*newrootDAEFD
*/
*EF
*/

privatenodegetRLbanlance(nodeoldroot){//右左深
//nodenewroot=oldroot.right.left;
//oldroot.right.left=newroot.right;
//newroot.right=oldroot.right;
//oldroot.right=newroot.left;
//newroot.left=oldroot;
//oldroot.height=Math.max(getHeight(oldroot.left),getHeight(oldroot.right))+1;
//newroot.right.height=Math.max(getHeight(newroot.right.left),getHeight(newroot.right.right))+1;
//newroot.height=Math.max(getHeight(oldroot.left),getHeight(newroot.right))+1;//原來的root的高度需要從新金酸
oldroot.right=getLLbanlance(oldroot.right);
oldroot.height=Math.max(getHeight(oldroot.left),getHeight(oldroot.right))+1;
returngetRRbanlance(oldroot);

}
}

測試情況:

af7e133c-37a8-11ec-82a8-dac502259ad0.png

AVL的理解需要時間,當(dāng)然筆者的AVL自己寫的可能有些疏漏,如果有問題還請各位一起探討!

當(dāng)然,除了插入,AVL還有刪除等其他操作,(原理相似。刪除后平衡)有興趣可以一起研究。

責(zé)任編輯:haq
聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • AVL
    AVL
    +關(guān)注

    關(guān)注

    0

    文章

    14

    瀏覽量

    10025
  • 二叉樹
    +關(guān)注

    關(guān)注

    0

    文章

    74

    瀏覽量

    12283

原文標題:這個樹,怎么一下就平衡了?

文章出處:【微信號:TheAlgorithm,微信公眾號:算法與數(shù)據(jù)結(jié)構(gòu)】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    指電極上覆蓋敏感材料的阻值計算

    覆蓋的敏感材料厚度超出指厚度時計算電阻,是否可以視作指電極指間電阻多個周期串聯(lián)后與超出指厚度部分敏感材料電阻并聯(lián)
    發(fā)表于 07-05 14:48

    手把手教你排序算法怎么寫

    今天以直接插入排序算法,給大家分享一下排序算法的實現(xiàn)思路,主要包含以下部分內(nèi)容:插入排序介紹插入排序算法
    的頭像 發(fā)表于 06-04 08:03 ?544次閱讀
    手把手教你<b class='flag-5'>排序</b>算法怎么寫

    用FPGA實現(xiàn)雙調(diào)排序的方法(2)

    典型的排序算法包括冒泡排序、選擇排序、插入排序、歸并排序、快速排序、希爾
    的頭像 發(fā)表于 03-21 10:28 ?525次閱讀
    用FPGA<b class='flag-5'>實現(xiàn)</b>雙調(diào)<b class='flag-5'>排序</b>的方法(2)

    FPGA實現(xiàn)雙調(diào)排序算法的探索與實踐

    雙調(diào)排序(BitonicSort)是數(shù)據(jù)獨立(Data-independent)的排序算法,即比較順序與數(shù)據(jù)無關(guān),特別適合并行執(zhí)行。在了解雙調(diào)排序算法之前,我們先來看看什么是雙調(diào)序列。
    發(fā)表于 03-14 09:50 ?399次閱讀
    FPGA<b class='flag-5'>實現(xiàn)</b>雙調(diào)<b class='flag-5'>排序</b>算法的探索與實踐

    十大排序算法總結(jié)

    排序算法是最經(jīng)典的算法知識。因為其實現(xiàn)代碼短,應(yīng)該廣,在面試中經(jīng)常會問到排序算法及其相關(guān)的問題。一般在面試中最常考的是快速排序和歸并排序等基
    的頭像 發(fā)表于 12-20 10:39 ?985次閱讀

    堆的實現(xiàn)思路

    什么是堆? 堆是一種 基于樹結(jié)構(gòu)的數(shù)據(jù)結(jié)構(gòu),它是一棵二叉樹 ,具有以下兩個特點: 堆是一個完全二叉樹,即除了最后一層,其他層都是滿的,最后一層從左到右填滿。 堆中每個節(jié)點都滿足堆的特性,即父節(jié)點的值
    的頭像 發(fā)表于 11-24 16:02 ?331次閱讀
    堆的<b class='flag-5'>實現(xiàn)</b>思路

    二叉樹的定義

    型結(jié)構(gòu) 是一類重要的 非線性數(shù)據(jù)結(jié)構(gòu) ,其中以二叉樹最為常用,直觀來看,是以分支關(guān)系定義的層次結(jié)構(gòu)。型結(jié)構(gòu)在客觀世界中廣泛存在,比
    的頭像 發(fā)表于 11-24 15:57 ?1034次閱讀
    <b class='flag-5'>樹</b>與<b class='flag-5'>二叉樹</b>的定義

    什么情況下需要布隆過濾器

    , gmail等郵箱垃圾郵件過濾功能 這幾個例子有一個共同的特點:如何判斷一個元素是否存在一個集合中? 常規(guī)思路 數(shù)組 鏈表 平衡二叉樹、Trie Map (紅黑) 哈希表 雖然
    的頭像 發(fā)表于 11-11 11:37 ?552次閱讀
    什么情況下需要布隆過濾器

    紅黑的特點及應(yīng)用

    比起理解紅黑的原理,更重要的是理解紅黑的應(yīng)用場景,因為某些應(yīng)用場景的需要,紅黑才會應(yīng)運而生。 紅黑的特點: 插入,刪除,查找都是O(logn)的復(fù)雜度。 紅黑
    的頭像 發(fā)表于 11-10 11:16 ?609次閱讀
    紅黑<b class='flag-5'>樹</b>的特點及應(yīng)用

    AVL公司展示高性能氫燃料發(fā)動機

    AVL公司點燃式發(fā)動機開發(fā)經(jīng)理Paul KAPUS表示:“AVL公司于2022年底對外正式宣布,將開發(fā)一款具有當(dāng)量燃燒和進氣道噴射(PFI)噴水技術(shù)的2.0 L氫燃料賽車發(fā)動機。
    的頭像 發(fā)表于 11-09 16:34 ?864次閱讀

    為什么MySQL索引要用B+tree?

    紅黑是一種特化的 AVL平衡二叉樹),都是在進行插入和刪除操作時通過特定操作保持二叉查找
    發(fā)表于 10-30 14:41 ?170次閱讀

    文件系統(tǒng)-多二叉樹的轉(zhuǎn)化

    在這一節(jié)中,我們來學(xué)習(xí)如何使用程序來實現(xiàn)一棵文件。在上一節(jié)中,我們了解到使用文件的方式來整合計算機中所有的資源,而這一棵文件則是一棵多
    的頭像 發(fā)表于 10-11 10:06 ?768次閱讀
    文件系統(tǒng)-多<b class='flag-5'>叉</b><b class='flag-5'>樹</b>與<b class='flag-5'>二叉樹</b>的轉(zhuǎn)化

    數(shù)據(jù)結(jié)構(gòu)面試之二叉樹相關(guān)操作

    根據(jù)前序可知根結(jié)點為1; 根據(jù)中序可知 4 7 2 為根結(jié)點 1 的左子樹和 8 5 9 3 6 為根結(jié)點 1 的右子樹; 遞歸實現(xiàn),把 4 7 2 當(dāng)做新的一棵和 8 5 9 3 6 也當(dāng)做新的一棵; 在
    發(fā)表于 10-10 14:50 ?182次閱讀
    數(shù)據(jù)結(jié)構(gòu)面試之<b class='flag-5'>二叉樹</b>相關(guān)操作

    jwt冒泡排序的原理

    排序的原理: 我們以一個隊伍站隊為例,教官第一次給隊員排隊是無序的,這時候就需要排隊,按矮到高的順序排列,首先拎出第一第個比較,如果第一個隊員比第個要高,則兩個交換位置, 高的放到排到第
    的頭像 發(fā)表于 09-25 16:33 ?451次閱讀
    jwt冒泡<b class='flag-5'>排序</b>的原理

    排序算法之選擇排序

    選擇排序: (Selection sort)是一種簡單直觀的排序算法,也是一種不穩(wěn)定的排序方法。 選擇排序的原理: 一組無序待排數(shù)組,做升序排序
    的頭像 發(fā)表于 09-25 16:30 ?1325次閱讀
    <b class='flag-5'>排序</b>算法之選擇<b class='flag-5'>排序</b>