精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

實用深度學習AI在汽車中的應用

電子設計 ? 來源:電子設計 ? 作者:電子設計 ? 2022-01-12 14:42 ? 次閱讀

作者:德州儀器Joe Folkens

在未來的某個時候,人們必定能夠相對自如地運用人工智能,安全地駕車出行。這個時刻何時到來我無法預見;但我相信,彼時“智能”會顯現出更“切實”的意義。

與此同時,通過深度學習方法,人工智能的實際應用能夠在汽車安全系統的發展進步中發揮重要的作用。而這些系統遠不止僅供典型消費者群體掌握和使用。

深度學習這一概念在幾十年前就已提出,但如今它與特定的應用程序、技術以及通用計算平臺上的可用性能更密切相關。深度學習的“深度”層面源于輸入層和輸出層之間實現的隱含層數目,隱含層利用數學方法處理(篩選/卷積)各層之間的數據,從而得出最終結果。在視覺系統中,深度(vs.寬度)網絡傾向于利用已識別的特征,通過構建更深的網絡最終來實現更通用的識別。這些多層的優點是各種抽象層次的學習特征。

例如,若訓練深度卷積神經網絡(CNN)來對圖像進行分類,則第一層學習識別邊緣等最基本的東西。下一層學習識別成形的邊緣的集合。后續圖層學習識別諸如眼或鼻這樣的形狀的集合,而最后一層將學習甚至更高階(如面部)的特征。多層更擅長進行歸納,因為它們可以學習原始數據和高級分類之間的所有中間特征。如圖1所示,這種跨越多層的歸納對于最終用例是有利的,如對交通標志進行分類,或者盡管存在墨鏡、帽子和/或其他類型的障礙物,也可能識別特定面部。

pYYBAGGKV0CACM-LAASlFTqytO4433.png

圖1:簡易交通標志示例

深度學習的“學習”層面源于對分層網絡如何在給定大量已知輸入及其期望輸出的情況下產生更準確結果(圖2)所需的訓練(反向傳播)的迭代。這種學習減少了那些迭代產生的錯誤,并最終獲得分層函數的結果,以滿足整體系統需求,并為目標應用程序提供極其穩健的解決方案。這種學習/分層/互連類型類似于生物神經系統,因此支持人工智能的概念。

pYYBAGGKV0OAPb47AAJ1stoXE-0403.png

圖2:簡易反向傳播示例

盡管深度學習具有效力,但其在實際應用中也遇到了一些挑戰。對于容易受到系統限制因素(如總體成本、功耗和擴展計算能力)影響的嵌入式應用程序而言,在設計支持深度學習功能的系統時必須考慮這些限制因素。開發人員可以使用前端工具,如Caffe(最初由加州大學伯克利分校開發的深度學習框架)或TensorFlow(谷歌的發明)來開發總網絡、層和相應的功能,以及目標最終結果的培訓和驗證。完成此操作后,針對嵌入式處理器的工具可將前端工具的輸出轉換為可在該嵌入式器件上或該嵌入式器件中執行的軟件。

TI深度學習(TIDL)框架(圖3)支持在TI TDAx汽車處理器上運行的深度學習/基于CNN的應用程序,以在高效的嵌入式平臺上提供極具吸引力的高級駕駛輔助系統(ADAS)功能。

TIDL框架為軟件可擴展性提供快速嵌入式開發和平臺抽象;在TI硬件上實現用于加速CNN的高度優化的內核,以及支持從開放框架(如Caffe和TensorFlow)到使用TIDL應用程序編程界面的嵌入式框架進行網絡轉換的轉換器

有關此解決方案的更多詳細信息,請閱讀白皮書“TIDL:嵌入式低功耗深度學習,” 并查看其它資源中的視頻

審核編輯:何安

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 汽車
    +關注

    關注

    13

    文章

    3425

    瀏覽量

    37171
收藏 人收藏

    評論

    相關推薦

    GPU深度學習的應用 GPUs圖形設計的作用

    隨著人工智能技術的飛速發展,深度學習作為其核心部分,已經成為推動技術進步的重要力量。GPU(圖形處理單元)深度學習
    的頭像 發表于 11-19 10:55 ?250次閱讀

    NPU深度學習的應用

    設計的硬件加速器,它在深度學習的應用日益廣泛。 1. NPU的基本概念 NPU是一種專門針對深度學習算法優化的處理器,它與傳統的CPU和G
    的頭像 發表于 11-14 15:17 ?298次閱讀

    AI大模型與深度學習的關系

    AI大模型與深度學習之間存在著密不可分的關系,它們互為促進,相輔相成。以下是對兩者關系的介紹: 一、深度學習
    的頭像 發表于 10-23 15:25 ?378次閱讀

    NVIDIA推出全新深度學習框架fVDB

    SIGGRAPH 上推出的全新深度學習框架可用于打造自動駕駛汽車、氣候科學和智慧城市的 AI 就緒型虛擬表示。
    的頭像 發表于 08-01 14:31 ?525次閱讀

    PythonAI的應用實例

    Python人工智能(AI)領域的應用極為廣泛且深入,從基礎的數據處理、模型訓練到高級的應用部署,Python都扮演著至關重要的角色。以下將詳細探討PythonAI
    的頭像 發表于 07-19 17:16 ?928次閱讀

    深度學習的時間序列分類方法

    的發展,基于深度學習的TSC方法逐漸展現出其強大的自動特征提取和分類能力。本文將從多個角度對深度學習時間序列分類
    的頭像 發表于 07-09 15:54 ?709次閱讀

    深度學習的無監督學習方法綜述

    應用往往難以實現。因此,無監督學習深度學習扮演著越來越重要的角色。本文旨在綜述
    的頭像 發表于 07-09 10:50 ?515次閱讀

    基于AI深度學習的缺陷檢測系統

    工業生產中,缺陷檢測是確保產品質量的關鍵環節。傳統的人工檢測方法不僅效率低下,且易受人為因素影響,導致誤檢和漏檢問題頻發。隨著人工智能技術的飛速發展,特別是深度學習技術的崛起,基于AI
    的頭像 發表于 07-08 10:30 ?1149次閱讀

    深度學習視覺檢測的應用

    深度學習是機器學習領域中的一個重要分支,其核心在于通過構建具有多層次的神經網絡模型,使計算機能夠從大量數據自動學習并提取特征,進而實現對復
    的頭像 發表于 07-08 10:27 ?629次閱讀

    深度學習的模型權重

    深度學習這一充滿無限可能性的領域中,模型權重(Weights)作為其核心組成部分,扮演著至關重要的角色。它們不僅是模型學習的基石,更是模型智能的源泉。本文將從模型權重的定義、作用、優
    的頭像 發表于 07-04 11:49 ?950次閱讀

    深度學習自動駕駛的關鍵技術

    隨著人工智能技術的飛速發展,自動駕駛技術作為其中的重要分支,正逐漸走向成熟。自動駕駛系統深度學習技術發揮著至關重要的作用。它通過模擬人腦的學習
    的頭像 發表于 07-01 11:40 ?677次閱讀

    FPGA深度學習應用或將取代GPU

    硬件公司供貨的不斷增加,GPU 深度學習的市場需求還催生了大量公共云服務,這些服務為深度學習
    發表于 03-21 15:19

    GPU深度學習的應用與優勢

    人工智能的飛速發展,深度學習作為其重要分支,正在推動著諸多領域的創新。在這個過程,GPU扮演著不可或缺的角色。就像超級英雄電影的主角一樣,GPU
    的頭像 發表于 12-06 08:27 ?1213次閱讀
    GPU<b class='flag-5'>在</b><b class='flag-5'>深度</b><b class='flag-5'>學習</b><b class='flag-5'>中</b>的應用與優勢

    深度學習人工智能的 8 種常見應用

    深度學習簡介深度學習是人工智能(AI)的一個分支,它教神經網絡學習和推理。近年來,它解決復雜問題
    的頭像 發表于 12-01 08:27 ?3239次閱讀
    <b class='flag-5'>深度</b><b class='flag-5'>學習</b><b class='flag-5'>在</b>人工智能<b class='flag-5'>中</b>的 8 種常見應用

    深度學習技術AI智能分析盒子人數統計的應用與優勢

    AI盒子的人數統計,當多人同時出入視野范圍時,傳統的算法模型很難準確識別和計算人數,容易導致重復統計。為解決這一難題,AI算法模型可以采用目標檢測與追蹤相結合、
    的頭像 發表于 11-29 09:07 ?493次閱讀