封裝級微調是一種半導體制造方法,可實現高度精確的放大器及其它線性電路。放大器精確度的主要測量指標是其輸入失調電壓。輸入失調電壓是以微伏為單位的放大器輸入端誤差電壓。該誤差電壓范圍可以從幾十微伏到幾千微伏。
放大器及其它半導體器件通過化學制造工藝構建。在制造過程中,數千個放大器構建在晶圓硅片上。每個放大器都包含數千個晶體管、電阻器以及電容器。輸入失調誤差產生的原因是每個放大器上的輸入晶體管不匹配。理想情況下每個晶體管都應該是完全相同的,但事實上半導體制造工藝并不完美,因此晶體管之間存在著差異。
在晶圓制造完成后需要以晶圓形式進行測試。在晶圓測試過程中,一些放大器采用激光微調工藝,在該工藝中可通過對每個器件上的微小電阻器進行測量和物理切割使用激光調整器件失調。這種工藝不僅耗時,而且成本高昂。此外,當器件從晶圓中移出并采用標準塑封(見圖1)封裝時,一些以晶圓形式獲得的精確度改善就會消失。這是因為封裝工藝會給半導體裸片產生應力,導致失調誤差移位。盡管存在這樣的不足,激光微調法仍然得到了廣泛的使用,而且確實能顯著改善精確度。
自動歸零校正是另一種最大限度降低失調誤差的方法。在該應用實例中,為每個放大器配套提供一個誤差校正電路,其可測量失調并添加一個用來抵消失調誤差的信號。該電路不僅需要數字控制,而且還會為設計增加成本、提高復雜性。更重要的是,數字電路的周期屬性會導致噪聲與信號混疊效應。盡管存在這些不足,自動歸零校正和其它數字校正方法仍然很有效,是最大限度降低失調誤差的普遍使用技術。
降低失調誤差的第三種方法是器件的封裝級微調。該方法與晶圓微調法相似,通過調整輸入級上的電阻器來校正失調電壓。但是在這種應用實例中,調整工作是在器件最終封裝后完成。調整方法通常是在最后封裝級制造測試過程中將數字信號應用于輸出。微調完成后,微調控制電路被禁用,調整永遠不會改變。封裝級微調通常叫做 e-TrimTM,這是德州儀器 (TI) 的專利封裝級微調架構,因為實現該微調使用的是數字信號而不是激光微調或其它傳統方法。查看圖 2 中的封裝級微調法視圖。
封裝級微調具有一些優于其它失調調整方法的優勢。記住,在激光微調法中,調整工作是在封裝前完成,一些失調校正會因封裝工藝產生的應力而消失。在封裝級微調使用實例中,調整是在封裝后進行的,因此這種方法不會受到封裝應力的影響。最終結果是這種方法會產生更低、更準確的失調電壓。此外,這種方法比激光微調更快,可降低成本。
封裝級微調還具有一些優于自動歸零校正的優勢。記住,在自動歸零校正應用實例中,數字校正電路會產生一些噪聲及混疊效應。封裝級微調器件不存在這些問題,因為內部微調電阻器的調整只在器件制造過程中執行一次,而自動歸零校正則是在器件工作期間不斷執行。
總之,封裝級微調法是一種提升模擬電路精確度非常高效的技術。這種方法與傳統方法相比具有多種優勢。OPA192 就是使用封裝級微調法的最新器件實例,可實現極高的失調精確度。
責任編輯:haq
-
放大器
+關注
關注
143文章
13553瀏覽量
213128 -
封裝
+關注
關注
126文章
7789瀏覽量
142734 -
模擬
+關注
關注
7文章
1422瀏覽量
83897
發布評論請先 登錄
相關推薦
評論