TI mmWave sensor是高集成度的毫米波雷達傳感器SOC,在開發過程中,SDK及TI DEMO均使用靈活的UART接口發送CLI命令進行射頻參數配置及相關算法參數的配置。對于量產及或者有固化參數的產品而言,將參數固化在代碼中會是一項明確的需求。本文介紹一種可以快速將CFG文件參數固化到應用代碼中的實現方式,同時支持原有串口的CLI配置,無需修改SDK驅動層代碼,可方便快捷的完成參數的固化。
本文的測試環境如下:
- 此方法適用器件型號:I/AWR1443, I/AWR1642, I/AWR1843, I/AWR6843
- 本文測試軟件版本:mmWave SDK 3.5.0.4
- 本文測試硬件平臺:IWR6843ISK EVM
1. 運行SDK mmWave sensor demo的流程及對外接口說明
在現有的TI mmWave SDK及TOOLBOX相關的示例代碼中,均使用兩個串口進行參數的配置及數據的獲取,EVM板載的TM4C MCU是一個板載XDS110仿真器,仿真器自帶兩路串口,可以直接完成SDK DEMO中的參數配置及數據輸出。在客制化產品中,可以使用外部的2個USB<->UART橋接線纜進行調試,兩個串口的默認使用情況如下:
配置命令口:Application/User Uart: Configuration port 115200bps: UART_RX/TX port <-> USB-UART cable <-> PC
數據口:Auxilliary Data Port: Data port 921600bps: MSS_LOGGER-> USB-UART cable -> PC
mmWave sensor的啟動配置流程
2. 修改CLI參數以調整mmWave sensor 的配置參數
以SDK內的Out of Box demo為例,將BIN文件(比如:.\mmwave_sdk_\packages\ti\demo\xwr68xx\mmw\xwr68xx_mmw_demo.bin)燒寫至板卡后,啟動后,需要通過GUI下發CFG配置(比如:.\mmwave_sdk_\packages\ti\demo\xwr68xx\mmw\profiles\profile_2d.cfg),成功將配置加載后,IWR6843雷達芯片及開始射頻發波及目標探測的工作。CFG文件各項配置具體信息在mmWave SDK user’s guide中有詳細描述(文檔路徑:.\mmwave_sdk_\docs\mmwave_sdk_user_guide.pdf),通過CLI參數的配置,可靈活修改雷達的RF參數及信號處理的參數,方便調試工作的進行。
對于Toolbox內的demo,則需要同時參考SDK user’s Guide 及toolbox內的demo guide,其配置文件有SDK通用的部分,也有屬于此demo獨有的配置命令,包含SDK參數、目標檢測層的參數、追蹤器層的參數,示例如下(.\mmwave_industrial_toolbox_4_9_0\labs\people_counting\68xx_3D_people_counting\chirp_configs\AOP_6m_default.cfg):
% See the SDK user's guide for more information
% "C:\ti\mmwave_sdk_[VER]\docs\mmwave_sdk_user_guide.pdf"
sensorStop
flushCfg
dfeDataOutputMode 1
channelCfg 15 7 0
adcCfg 2 1
adcbufCfg -1 0 1 1 1
lowPower 0 0
% Detection Layer Parameters
% See the Detection Layer Tuning Guide for more information
% "C:\ti\mmwave_industrial_toolbox_[VER]\labs\people_counting\docs\3D_people_counting_detection_layer_tuning_guide.pdf"
profileCfg 0 60.75 30.00 25.00 59.10 394758 0 54.71 1 96 2950.00 2 1 36
chirpCfg 0 0 0 0 0 0 0 1
chirpCfg 1 1 0 0 0 0 0 2
chirpCfg 2 2 0 0 0 0 0 4
frameCfg 0 2 96 0 55.00 1 0
dynamicRACfarCfg -1 4 4 2 2 8 12 4 8 5.00 8.00 0.40 1 1
staticRACfarCfg -1 6 2 2 2 8 8 6 4 8.00 15.00 0.30 0 0
dynamicRangeAngleCfg -1 0.75 0.0010 1 0
dynamic2DAngleCfg -1 1.5 0.0300 1 0 1 0.30 0.85 8.00
staticRangeAngleCfg -1 0 8 8
antGeometry0 -1 -1 0 0 -3 -3 -2 -2 -1 -1 0 0
antGeometry1 -1 0 -1 0 -3 -2 -3 -2 -3 -2 -3 -2
antPhaseRot 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
fovCfg -1 70.0 20.0
compRangeBiasAndRxChanPhase 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
% Tracker Layer Parameters
% See the Tracking Layer Tuning Guide for more information
% "C:\ti\mmwave_industrial_toolbox_[VER]\labs\people_counting\docs\3D_people_counting_tracker_layer_tuning_guide.pdf"
staticBoundaryBox -3 3 0.5 7.5 0 3
boundaryBox -4 4 0 8 0 3
sensorPosition 2 0 15
gatingParam 3 2 2 2 4
stateParam 3 3 12 500 5 6000
allocationParam 20 100 0.1 20 0.5 20
maxAcceleration 0.1 0.1 0.1
trackingCfg 1 2 800 30 46 96 55
presenceBoundaryBox -3 3 0.5 7.5 0 3
sensorStart
3. 固化CLI參數以實現芯片上電后自動加載配置
固化配置參數有幾種操作方式,如SDK文檔描述(file:///C:/ti/mmwave_sdk_03_05_00_04/packages/ti/demo/xwr68xx/mmw/docs/doxygen/html/index.html#bypassCLI),用戶可以將CFG文件中每一條都使用對應的函數調用替換。這種方式比較底層,代碼的改動量較大,但是可以節省一部分代碼空間。實現方法可參考Toolbox中提供的一個hard-coded chirp configurations的參考示例代碼,位于:.\mmwave_industrial_toolbox_4_9_0\labs\out_of_box_demo\68xx_mmwave_sdk_hcc
本文所介紹的CLI參數固化方式將保留原有的CLI串口調試的接口,同時將現有的CFG參數以CLI的格式配置進去,可視化程度高,實現更為簡單,實現方式如下。
- 在c 增加頭文件
#include
- 在c中增加外部結構體的定義。
extern CLI_MCB gCLI;
- 在c中,增加如下外部函數定義。
extern void MmwDemo_Bypass_CLI (void);
- 在c的"void MmwDemo_initTask(UArg arg0, UArg arg1)"函數中,在CLI_OPEN之后,調用” MmwDemo_Bypass_CLI”函數。
MmwDemo_Bypass_CLI();
- 在C中增加如下配置命令及代碼。
#define CLI_BYPASS 1
#define MAX_RADAR_CMD 30
uint8_t* radarCmdString[MAX_RADAR_CMD] =
{
{"sensorStop\r\n"},
{"flushCfg\r\n"},
{"dfeDataOutputMode 1\r\n"},
{"channelCfg 15 5 0\r\n"},
{"adcCfg 2 1\r\n"},
{"adcbufCfg -1 0 1 1 1\r\n"},
{"lowPower 0 0\r\n"},
{"profileCfg 0 60 7 3 24 0 0 166 1 256 12500 0 0 158\r\n"},
{"chirpCfg 0 0 0 0 0 0 0 1\r\n"},
{"chirpCfg 1 1 0 0 0 0 0 4\r\n"},
{"frameCfg 0 1 32 0 100 1 0\r\n"},
{"guiMonitor -1 1 1 1 0 0 1\r\n"},
{"cfarCfg -1 0 2 8 4 3 0 15.0 0\r\n"},
{"cfarCfg -1 1 0 4 2 3 1 15.0 0\r\n"},
{"multiObjBeamForming -1 1 0.5\r\n"},
{"calibDcRangeSig -1 0 -5 8 256\r\n"},
{"clutterRemoval -1 0\r\n"},
{"compRangeBiasAndRxChanPhase 0.0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0\r\n"},
{"measureRangeBiasAndRxChanPhase 0 1. 0.2\r\n"},
{"aoaFovCfg -1 -90 90 -90 90\r\n"},
{"cfarFovCfg -1 0 0.25 9.0\r\n"},
{"cfarFovCfg -1 1 -20.16 20.16\r\n"},
{"extendedMaxVelocity -1 0\r\n"},
{"CQRxSatMonitor 0 3 4 63 0\r\n"},
{"CQSigImgMonitor 0 127 4\r\n"},
{"analogMonitor 0 0\r\n"},
{"lvdsStreamCfg -1 0 0 0\r\n"},
{"bpmCfg -1 0 0 0\r\n"},
{"calibData 0 0 0\r\n"},
{"sensorStart\r\n"}
};
static int32_t CLI_ByPassApi(CLI_Cfg* ptrCLICfg)
{
//uint8_t cmdString[128];
char* tokenizedArgs[CLI_MAX_ARGS];
char* ptrCLICommand;
char delimitter[] = " \r\n";
uint32_t argIndex;
CLI_CmdTableEntry* ptrCLICommandEntry;
int32_t cliStatus;
uint32_t index, idx;
uint16_t numCLICommands = 0U;
/* Sanity Check: Validate the arguments */
if (ptrCLICfg == NULL)
return -1;
/* Cycle through and determine the number of supported CLI commands: */
for (index = 0; index < CLI_MAX_CMD; index++)
{
/* Do we have a valid entry? */
if (ptrCLICfg->tableEntry[index].cmd == NULL)
{
/* NO: This is the last entry */
break;
}
else
{
/* YES: Increment the number of CLI commands */
numCLICommands = numCLICommands + 1;
}
}
/* Execute All Radar Commands */
for (idx = 0; idx < MAX_RADAR_CMD; idx++)
{
/* Reset all the tokenized arguments: */
memset ((void *)&tokenizedArgs, 0, sizeof(tokenizedArgs));
argIndex = 0;
ptrCLICommand = (char*)radarCmdString[idx];
/* Set the CLI status: */
cliStatus = -1;
/* The command has been entered we now tokenize the command message */
while (1)
{
/* Tokenize the arguments: */
tokenizedArgs[argIndex] = strtok(ptrCLICommand, delimitter);
if (tokenizedArgs[argIndex] == NULL)
break;
/* Increment the argument index: */
argIndex++;
if (argIndex >= CLI_MAX_ARGS)
break;
/* Reset the command string */
ptrCLICommand = NULL;
}
/* Were we able to tokenize the CLI command? */
if (argIndex == 0)
continue;
/* Cycle through all the registered CLI commands: */
for (index = 0; index < numCLICommands; index++)
{
ptrCLICommandEntry = &ptrCLICfg->tableEntry[index];
/* Do we have a match? */
if (strcmp(ptrCLICommandEntry->cmd, tokenizedArgs[0]) == 0)
{
/* YES: Pass this to the CLI registered function */
cliStatus = ptrCLICommandEntry->cmdHandlerFxn (argIndex, tokenizedArgs);
if (cliStatus == 0)
{
CLI_write ("Done\n");
}
else
{
CLI_write ("Error %d\n", cliStatus);
}
break;
}
}
/* Did we get a matching CLI command? */
if (index == numCLICommands)
{
/* NO matching command found. Is the mmWave extension enabled? */
if (ptrCLICfg->enableMMWaveExtension == 1U)
{
/* Yes: Pass this to the mmWave extension handler */
cliStatus = CLI_MMWaveExtensionHandler (argIndex, tokenizedArgs);
}
/* Was the CLI command found? */
if (cliStatus == -1)
{
/* No: The command was still not found */
CLI_write ("'%s' is not recognized as a CLI command\n", tokenizedArgs[0]);
}
}
}
return 0;
}
void MmwDemo_Bypass_CLI (void)
{
if (CLI_ByPassApi(&gCLI.cfg) != 0)
{
System_printf ("Error: Unable to CLI_ByPassApi\n");
return;
}
return;
}
4. 運行測試例程
將上述代碼集成進測試程序后,mmWave sensor成功配置。將此BIN文件燒寫到EVM板卡中,可以實現上電自動配置參數及運行的功能,代碼上電自動運行功能添加成功。
CCS debug運行模式下,CCS控制臺打印信息如下:
[Cortex_R4_0] **********************************************
Debug: Launching the MMW Demo on MSS
**********************************************
Debug: Launched the Initialization Task
Debug: mmWave Control Initialization was successful
Debug: mmWave Control Synchronization was successful
[C674X_0] Debug: DPM Module Sync is done
[Cortex_R4_0] Debug: CLI is operational
Debug: Sending rlRfSetLdoBypassConfig with 0 0 0
============ Heap Memory Stats ============
Size Used Free DPCUsed
System Heap(TCMB) 32768 28016 4752 2048
L3 786432 262144 524288
localRam(TCMB) 4096 512 3584
============ Heap Memory Stats ============
Size Used Free DPCUsed
System Heap(L2) 32768 16112 16656 0
L3 786432 16384 770048
localRam(L2) 50176 15272 34904
localRam(L1) 16384 5728 10656
Starting Sensor (issuing MMWave_start)
直接燒寫BIN文件到EVM板卡,串口打印信息如下:
******************************************
xWR68xx MMW Demo 03.05.00.04
******************************************
mmwDemo:/>Ignored: Sensor is already stopped
Done
Done
Done
Done
Done
Done
Done
Done
Done
Done
Done
Done
Done
Done
Done
Done
Done
Done
Done
Done
Done
Done
Done
Done
Done
Done
Done
Done
Done
Debug: Init Calibration Status = 0x1ffe
Done
mmwDemo:/>
5. 附加說明
在部分的demo(比如3D people counting demo)中,會出現堆棧溢出導致上電后,initTask中,bypasscli配置失敗的情況,此時只需要需要適當增加此task的stacksize為4*1024,即可完成參數的配置。
/* Initialize the Task Parameters. */
Task_Params_init(&taskParams);
taskParams.stackSize = 4*1024;
gMmwMssMCB.taskHandles.initTask = Task_create(MmwDemo_initTask, &taskParams, NULL);
6. 參考資料
- IWR6843、IWR6443 單芯片 60GHz 至 64GHz 毫米波傳感器 數據表 (Rev. D)
- mmWave SDK: mmWave Software Development Kit http://www.ti.com/tool/mmwave-sdk
- mmWave SDK User’s Guide: C:\ti\mmwave_sdk_03_05_00_04\docs\mmwave_sdk_user_guide.pdf
- mmWave SDK Out of Box Demo - XWR68XX: C:/ti/mmwave_sdk_03_05_00_04/packages/ti/demo/xwr68xx/mmw/docs/doxygen/html/index.html
- mmWave SDK Out of Box Demo - 68xx Hard-Coded Config Version User's Guide: C:/ti/mmwave_industrial_toolbox_4_9_0/labs/out_of_box_demo/68xx_mmwave_sdk_hcc/docs/mmWave_sdk_68xx_hcc_user_guide.html
-
汽車
+關注
關注
13文章
3423瀏覽量
37168 -
AWR1443
+關注
關注
0文章
3瀏覽量
2241
發布評論請先 登錄
相關推薦
評論