主動式線性唱臂的機電組件,即小型步進電機,會直接在唱臂的固定裝置上產生振動,然后傳遞到唱頭殼和唱針。這種振動會增加噪音,使頭罩震動,并降低音頻信號的質量。那么,當使用步進電機時,這些額外的振動及噪音從何而來?
Trinamic步進電機的噪音來源
線性跟蹤唱臂對于步進電機來說既是一個非常特殊的應用,也是一個典型的應用,因為機械設備需要定位,而且需要非常精確地定位。一般來說,步進電機廣泛用于自動化、數字制造、醫療和光學設備等幾乎所有類型的移動應用中。
步進電機的優點是成本相對較低,在不使用變速箱的情況下在靜止和低速時具有高扭矩,以及對定位任務的固有適用性。與三相無刷電機和伺服驅動器相比,步進電機不一定需要復雜的控制算法或位置反饋來進行換向。
步進器的缺點是噪音很大,即使在低速或靜止時也是如此。步進電機有兩個主要的振動源:步進分辨率,以及斬波器和脈沖寬度調制 (PWM) 模式導致的副作用。
分析Trinamic步進電機分辨率和微步
典型的步進電機有 50 個磁極,可實現 200 個完整步長,每個步距角為 1.8°,可實現 360° 的完整機械旋轉。但也有步數較少的步進電機,甚至高達 800 個全步。最初,這些電機用于全步或半步模式。施加在兩個電機線圈 A(藍色)和 B(紅色)上的電流矢量在整個電氣旋轉(電氣 360°)上顯示為矩形。下面兩張圖中突出顯示的那樣,電機線圈以 90° 相移模式以全電流或無電流供電。因此,每個周期的一電轉由 4 個整步或 8 個半步組成。也就是說,50 極步進電機需要 50 次電氣旋轉才能完成一整機械轉。
全步或半步等低分辨率步進模式是步進電機的主要噪聲源。它們引入了巨大的振動,這種振動遍布系統的整個力學,特別是在低速和接近某些共振頻率時。在較高的速度下,由于慣性矩,這些影響會降低。
轉子可以想象成一個諧波振蕩器或彈簧擺,如下圖所示。在驅動器電子設備施加新的電流矢量后,轉子將沿著新指令位置的方向步進到下一個全步或半步位置。與脈沖響應類似,轉子過沖并圍繞下一個位置振蕩,從而導致機械振動和噪音。運動遠非平穩,尤其是在較低的速度下。
為了減少這些振蕩,可以應用一種稱為微步進的機制。這將一個完整的步驟分成更小的部分,或微步驟。典型分辨率為 2(半步)、4(四分之一步)、8、32 甚至更多微步。定子線圈不是以全電流或零電流供電,而是以中間電流水平接近完整的正弦波波形超過 4 個完整的步驟。這將永磁轉子定位在兩個后續完整步驟之間的中間位置。這甚至允許適應步進電機的物理特性或應用的特殊定制電流波形(TRINAMIC的驅動芯片支持該功能)。
微步進的最大分辨率由驅動器的 A/D 和 D/A 功能定義。Trinamic 的步進電機控制器和驅動器允許使用每整步高達 256(8 位)微步的步進電機,使用芯片的集成可配置正弦波表甚至完全自定義電流波形。
使用這種高微步分辨率的結果是電機轉子現在以更小的角度或更短的距離步進。當切換到新位置時,如上圖所示的過沖和下沖會大大減少。而下圖顯示了這種差異。
斬波器和 PWM 模式
另一個噪聲和振動源源自步進電機通常使用的傳統斬波器和 PWM 模式。由于粗步進分辨率的主要影響,這些模式的寄生效應常常被忽略。但隨著使用微步進提高步進分辨率,這些寄生效應變得明顯甚至可以聽見。
經典的恒定關斷時間 PWM 斬波器模式是一種電流控制的 PWM 斬波器,它以快衰減和慢衰減相位之間的固定關系工作。在其最大值點,電流達到指定的目標電流,這導致平均電流低于所需的目標電流,如下圖所示。
在完整的電氣旋轉中,當電流的符號(方向)發生變化時,這會導致正弦波的過零區域周圍出現一個平臺。這個平臺的影響是電機繞組中電流為零的一小段時間,這意味著根本沒有扭矩。這會導致擺動和振動,尤其是在較低的速度下。
與恒定關斷時間斬波器相比,Trinamic 的 SpreadCycle? PWM 斬波器模式應用采用磁滯功能,自動使用慢速和快速衰減周期之間的擬合關系。平均電流反映了配置的標稱電流。在正弦波的過零區域沒有平臺。這減少了電流和轉矩脈動,并接近了真正的正弦波形,與恒定關斷時間的 PWM 斬波器相比,電機運行更加平穩。這在靜止和慢速到中等速度時尤其重要。
TMC5130A-TA 是一款包含 StealthChop 模式的小型智能步進電機驅動器和控制器 IC,是這款卓越模擬唱機的終極解決方案。除了 StealthChop 之外,Trinamic 還改進了電壓模式操作并將其與電流控制相結合。為了最大限度地減少電流波動,TMC5130A-TA 芯片的驅動器根據電流反饋調節電壓調制。這允許系統根據電機參數和工作電壓進行自我調整。
如何使步進電機完全靜音?
盡管微步減少了由低步分辨率引起的大部分振動,但高微步分辨率可以更容易地感知其他振動源。先進的電流控制 PWM 斬波器模式,如 Trinamic 的 SpreadCycle? 算法,在硬件中實現,在很大程度上減少了振動和抖動。這對于許多標準應用來說已經足夠了,也非常適合高速應用。
但即使使用像SpreadCycle這樣的電流控制斬波器模式,由于電機線圈不同步、檢測電阻上幾毫伏的調節噪聲和PWM抖動,仍然會產生一點點可聽噪聲和振動。這種噪音和振動對于高端應用、低速到中速應用以及任何噪音無法接受的應用至關重要。對于 Dereneville DTT-01-S 線性跟蹤唱臂來說,這是無法忍受的,因為來自微步進驅動器和混合步進器的噪聲會疊加在音頻信號上,尤其是在各個音軌之間過渡的普通凹槽內。
Trinamic 的 StealthChop? 算法 [4] 也在硬件中實現,最終使步進電機靜音。但是 StealthChop 實際上如何對電機實現靜音,為什么它不會產生額外的噪音和振動?與基于電流的斬波器模式(如 SpreadCycle)相比,StealthChop 采用了不同的方法:它是一種基于電壓斬波器的技術,負責 Dereneville DTT-01-S 唱臂和唱針的無噪音和平穩移動。結合閉環跟蹤角度調節和精密激光光學,這使得頭殼和測針的最大跟蹤角度誤差<0.05°。良好的傳統樞軸唱臂具有<2°-3°的典型跟蹤角誤差,并且還受到滑行力和凹槽的機械磨損的影響。
TMC5130A-TA 是一款包含 StealthChop 模式的小型智能步進電機驅動器和控制器 IC,是這款卓越模擬唱機的終極解決方案。除了 StealthChop 之外,Trinamic 還改進了電壓模式操作并將其與電流控制相結合。為了最大限度地減少電流波動,TMC5130A-TA 芯片的驅動器根據電流反饋調節電壓調制。這允許系統根據電機參數和工作電壓進行自我調整。
消除了由直流控制環路的調節算法引起的小振蕩。由于SpreadCycle 和其他電流調節斬波器原理總是對線圈電流測量做出逐個周期的反應,因此復雜系統中總是存在幾毫伏的噪聲,以及內部兩個線圈之間的電磁耦合。導致產生的電機電流的微小變化,從而影響斬波器。
下面兩張圖比較了電壓控制的 StealthChop 和電流控制的 SpreadCycle。StealthChop 的過零行為是完美的:當電流值的符號從正變為負或反之亦然時,沒有平臺,而是零電流水平的直線交叉,因為電流是基于調制的 PWM 占空比。在 50% PWM 占空比下,電流實際上為零。
配備 StealthChop 的電機驅動器結合了與模擬非常相似的電流波形 – 這在某種程度上非常適合 Dereneville 模擬卡座的應用 – 在不增加成本的情況下對功耗進行了一些小幅改進。結果是耳語般安靜的運動。除了無法改變的滾珠軸承噪音外,StealthChop 提供了異常安靜的步進電機性能。使用 StealthChop 的應用已實現低于經典電流控制 10dB 的噪聲水平。正如我們從物理學中所知道的,-3dB 的變化代表大約一半的噪音或聲級降低。
下圖顯示了唱臂機電致動器的最終控制器 PCB 以及 Trinamic 的智能步進電機驅動器解決方案。它由 Dischereit設計和制造。
用于切向唱臂DTT-01-S 的機電致動器的控制器 PCB,以及Trinamic 的智能步進電機驅動器解決方案。
總結與結論
用于卓越的Dereneville Modulaire MK III 模擬轉盤的新型全自動切向唱臂 DerenevilleDTT-01-S 重新定義了模擬 HiFi 世界的標準。它確實是同類產品中的首創。對于超靜音操作,唱臂依賴于 TMC5130A-TA 步進電機驅動器和控制器。這款智能 IC 具有 StealthChop 模式,可實現超靜音步進電機運行(無噪音和物理振動),為這一完美工程增添了必要的最后潤色:它負責提供發燒友喜歡聽到的純凈聲音,如聲音盡可能的響亮。
雖然考慮到IC業務,這種獨家模擬芯片的制造量可能相對較低,但有許多類似的應用可以利用這種智能IC技術。其中包括半導體制造設備、醫療應用和實驗室自動化中的晶圓處理。對于低噪音和低振動,它們都有相似的性能要求。此外,到目前為止,還有其他應用對噪音、振動和運動質量的要求較低,這些應用可以通過這項技術得到顯著改善。也有越來越多的新興嵌入式應用程序實際上只有通過這種智能解決方案才能成為可能 – 從定性和定量的角度來看。其中包括,例如,3D 打印和桌面制造應用、無法接受可聽噪聲的高級個人醫療設備、相機滑軌以及高級閉路電視和監控攝像頭。TMC5130A 系列終極步進電機驅動器和控制器反映了運動控制的大趨勢。
審核編輯:符乾江
-
芯片
+關注
關注
453文章
50406瀏覽量
421829 -
步進電機
+關注
關注
150文章
3095瀏覽量
147347 -
驅動IC
+關注
關注
9文章
298瀏覽量
33774
發布評論請先 登錄
相關推薦
評論