精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

無人機高光譜在農田信息監測中的應用

萊森光學 ? 來源:萊森光學 ? 作者:萊森光學 ? 2022-04-29 10:26 ? 次閱讀

無人機可搭載的遙感傳感器多種多樣, 可以獲取多維度、高精度的農田信息, 實現多類農田信息的動態監測。這些信息主要包括作物空間分布信息(農田定位、作物種類識別、面積估算及變化動態監測、田間基礎設施提取)、作物生長信息(作物表型參數、營養指標、產量), 以及作物生長脅迫因子(田間墑情、病蟲害)動態等。

農田空間信息

農田空間位置信息包括田塊的地理坐標及通過目視判別或機器識別得到的作物分類。通過地理坐標識別出田塊邊界還可以實現種植面積的估算。傳統的方法通過以地形圖作為底圖進行數字化開展區域規劃和面積測算, 時效性差, 邊界位置與實際情況差異巨大且缺乏直觀性, 不利于精準農業的實施。無人機高光譜可以實時獲取全面的農田空間位置信息, 具有傳統方法無可比擬的優勢。高清數碼相機的航拍影像即可實現農田基本空間信息的識別和判定, 空間構型技術的發展提高了農田位置信息研究的精度與深度, 在引入高程信息的同時提升了空間分辨率, 可實現更精細的農田空間信息監測。將無人機DEM數據用于農田灌溉渠系的提取, 渠系提取的完整度達85.61%。

作物生長信息

作物生長狀況可以通過表型參數、營養指標以及產量等信息來表征。表型參數包括植被覆蓋度、葉面積指數、生物量、株高等。這些參數相互關聯、共同表征了作物的長勢情況, 與最終產量直接相關。在農田信息監測研究中占有主導地位, 已經開展的研究相對較多。

作物表型參數

葉面積指數(Leaf Area Index, LAI)是指單位地表面積上單面綠葉面積的總和, 可較好地表征作物對光能的吸收利用, 與作物的物質積累和最終產量關系密切。葉面積指數是目前無人機高光譜監測的主要作物生長參數之一。以多光譜數據計算植被指數(比值植被指數、歸一化植被指數、土壤調節植被指數、差值植被指數等)與地面實測數據建立回歸模型是反演表型參數較為成熟的方法。高林等通過對多個生育期、多種植被指數和不同模型的比較, 選擇鼓粒期(大豆主莖最上部4個具有充分生長葉片著生的節中, 任何一個節位上豆莢內綠色種子充滿莢皮的時期)歸一化差分植被指數(Normalized Difference Vegetation Index, NDVI)的線性回歸模型反演大豆LAI, 決定系數R2=0.829, 均方根誤差RMSE=0.301, 估測精度EA=85.4%。也有利用可見光圖像估測LAI的研究, 構建了基于可見光大氣阻抗植被指數(Visible Atmospherically Resistant Index, VARI)原理的數字圖像特征參數(UAV-based VARIRGB)的指數模型, R2也達到0.71。高光譜的高分辨率優勢為研究者提供了更豐富和連續的數據。

隨著高光譜傳感器的推廣和高階數據處理方法的發展, 應用高光譜估算LAI的研究逐漸增多。已有研究證實, 攜式地物光譜儀(Analytica Spectra Devices, ASD)獲取的地面高光譜比值植被指數(Ratio Vegetation Index, RVI)對數模型的LAI預測能力優于無人機多光譜的NDVI線性模型; Cubert UHD 185-Firefly(UHD185)是新型的無人機載高光譜傳感器, 研究者通過對冬小麥孕穗、開花、灌漿期的UHD185高光譜影像與冠層ASD反射率的比較發現, 其在第3波段~第96波段(458~830nm)具有較好的光譜質量。采用偏最小二乘回歸法(Partial Least Squares Regression, PLSR)與紅邊參數結合估算葉面積指數, 獨立驗證R2=0.757, RMSE=0.732;交叉驗證R2=0.755, RMSE=0.762。針對傳統固定波段植被指數存在的波段范圍問題, 通過動態搜索植被指數, 將波段范圍內的反射率極值定義為極值植被指數, 提高了棉花LAI的估測精度(驗證R2最大提高了0.11)。

作物生長后期地上部生物量與產量和品質的關系均很密切。目前農業上用無人機高光譜進行生物量估測仍多使用多光譜數據, 提取光譜參數、計算植被指數進行建模; 空間構型技術在生物量的估算方面有一定優勢,以呼倫貝爾草地為研究對象, 提出基于無人機的草層高和蓋度提取方法, 并用這兩項參數反演了地上生物量(R2=0.784, RMSE=108.9 g·m-2)。該研究還探討了無人機飛行高度對草層高度和蓋度提取結果的影響, 并應用鑲嵌算法提升了圖像拼接的效率和效果, 對于農田作物生物量的估算具有參考意義。利用SfM算法獲取作物表面模型(Crop Surface Models, CSM)提取作物冠層高度, 結合3種可見光區植被指數來估算大麥生物量, 發現該方法在抽穗前期可靠, 但生長后期預測效果不佳??梢娚趯τ诮档倪x擇有很大影響。在對大豆生物量的反演過程中, 采取了分段建模的方式。

在開花結莢期以優化土壤調節植被指數(Optimization of Soil Adjusted Vegetation Index, OSAVI), 紅邊位置輔以株高為自變量通過最小二乘法建立多元線性回歸模型, 獨立驗證R2=0.727, RMSE為0.145;交叉驗證R2為0.714,RMSE為0.393;在生長后期(即鼓粒成熟期), 由于株高穩定、對生物量影響小, 不再作為建模參數, 以4種高光譜植被指數建立的生物量回歸模型, 獨立驗證R2為0.698, RMSE為0.238;交叉驗證R2為.697,RMSE為0.386。

作物營養指標

傳統的作物營養狀態監測需要通過田間取樣、室內化學分析, 以診斷營養物質或指標(葉綠素、氮素等)的含量, 而無人機高光譜則依據不同物質具有特異的光譜反射吸收特征進行診斷。葉綠素的監測依據是其在可見光波段有兩個強吸收區, 即640~663 nm的紅光部分和430~460nm的藍紫光部分, 而在550 nm處吸收很弱。作物缺素時, 葉片顏色、紋理特征均會變化, 發掘不同缺素情況對應的顏色和紋理的統計特征及相關特性是營養監測的關鍵。

與生長參數監測類似, 特征波段、植被指數和預測模型的選擇依舊是研究的主要內容。對多光譜植被指數、紋理特征建立不同葉綠素的相對含量值(Soil and Plant Analyzer Development, SPAD)預測模型, 比較得出紋理特征易受成像質量影響, 穩定性差于優選植被指數; 該研究還發現延后采集時間、增加采集高度、降低飛行速度均能提高模型預測精度。在高值經濟作物研究中, 利用無人機近紅外影像監測茶樹葉片氮含量, 優化茶葉采摘時間, 在保持茶葉口感的同時提高收獲量, 顯著提高了經濟效益。植被輻射傳輸機理模型可描述光在作物葉片和冠層吸收、反射的物理過程, 模型以作物生理信息為輸入參數, 輸出模擬的冠層光譜信息。通過查找表法、數值優化法、人工神經網絡等方法可以反演作物的生長信息。高精度植被輻射傳輸機理模型被越來越多的研究者所使用。

好了, 有關無人機高光譜在農田信息監測中的應用等介紹我們就講到這里了,下期我們再來聊聊有關作物產量等問題,不見不散!

萊森光學(深圳)有限公司是一家提供光機電一體化集成解決方案的高科技公司,我們專注于光譜傳感和光電應用系統的研發、生產和銷售。

審核編輯:湯梓紅

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 監測
    +關注

    關注

    2

    文章

    3541

    瀏覽量

    44451
  • 無人機
    +關注

    關注

    228

    文章

    10350

    瀏覽量

    179674
  • 高光譜
    +關注

    關注

    0

    文章

    328

    瀏覽量

    9917
收藏 人收藏

    評論

    相關推薦

    無人機光譜影像與冠層樹種多樣性監測

    無人機光譜影像與冠層樹種多樣性監測冠層樹種多樣性是自然森林生態系統功能和服務的重要基礎。
    的頭像 發表于 08-19 15:22 ?238次閱讀
    <b class='flag-5'>無人機</b><b class='flag-5'>高</b><b class='flag-5'>光譜</b>影像與冠層樹種多樣性<b class='flag-5'>監測</b>

    無人機機載光譜成像系統的應用及優勢

      隨著無人機技術的快速發展,基于無人機平臺的光譜成像系統在多個領域中得到了廣泛應用。本文將介紹一款小型多旋翼無人機機載
    的頭像 發表于 08-15 15:03 ?596次閱讀
    <b class='flag-5'>無人機</b>機載<b class='flag-5'>高</b><b class='flag-5'>光譜</b>成像系統的應用及優勢

    基于無人機遙感的作物長勢監測研究進展

    產量和品質,降低了農業生產成本和減少了資源浪費 一、引言 無人機農業遙感技術是將無人機與遙感技術相結合,用于對農田進行高精度、高分辨率的遙感監測和數據采集的技術。其以
    的頭像 發表于 07-12 14:14 ?574次閱讀
    基于<b class='flag-5'>無人機</b>遙感的作物長勢<b class='flag-5'>監測</b>研究進展

    第二集 知語云智能科技無人機反制技術與應用--無人機的發展歷程

    世紀初,無人機技術便開始在軍事領域嶄露頭角。隨著航空技術的不斷進步,無人機逐漸發展出偵察、打擊、通信中繼等多種功能,成為現代戰爭的重要力量。進入21世紀,隨著消費級無人機的興起,
    發表于 03-12 10:56

    如何利用無人機光譜影像技術進行深海生物調查與監測?

    收集方式,特別是在難以接近的深海區域。這種技術通過捕捉不同波長的光譜信息,可以幫助科學家們在不直接接觸海洋生態系統的情況下,對深海生物進行有效的調查與監測。 一、無人機
    的頭像 發表于 03-08 10:38 ?456次閱讀
    如何利用<b class='flag-5'>無人機</b><b class='flag-5'>高</b><b class='flag-5'>光譜</b>影像技術進行深海生物調查與<b class='flag-5'>監測</b>?

    農作物生長監測,無人機光譜影像如何識別病蟲害和缺素情況?

    受到環境和人為因素的限制,因此需要一種高效、精準的監測手段來應對這一挑戰。無人機技術的崛起為農作物生長監測帶來了全新的解決方案。結合光譜
    的頭像 發表于 02-26 15:54 ?917次閱讀
    農作物生長<b class='flag-5'>監測</b><b class='flag-5'>中</b>,<b class='flag-5'>無人機</b><b class='flag-5'>高</b><b class='flag-5'>光譜</b>影像如何識別病蟲害和缺素情況?

    知語云智能科技:反制無人機新篇章—全景監測與激光打擊的尖端技術

    了反制無人機系統的夜間作戰能力,為守護夜間空域安全提供了有力保障。 可見光技術則負責在白天或光照充足的條件下,通過高清攝像頭捕捉無人機的實時圖像,為操作人員提供直觀的視覺信息。這一技術不僅提高了
    發表于 02-23 11:37

    無人機全景監測:空域管理的新革命

    提供更加準確的信息。 智能化分析與決策支持:通過先進的數據處理和分析技術,無人機全景監測能夠提供智能化的決策支持。管理者可以根據這些數據,制定出更加科學、合理的空域管理方案。 三、知語云智能科技的創新
    發表于 02-20 15:23

    比較基于無人機光譜影像和傳統方法的土壤類型分類精度

    遙感技術的應用為土壤分類提供了新的可能性。光譜影像技術是無人機遙感的重要組成部分,其能夠提供大量的土地表面光譜信息,為土壤類型分類提供了
    的頭像 發表于 02-19 16:55 ?425次閱讀
    比較基于<b class='flag-5'>無人機</b><b class='flag-5'>高</b><b class='flag-5'>光譜</b>影像和傳統方法的土壤類型分類精度

    無人機光譜影像在地質勘探的應用

    地質勘探是尋找和評估地下資源(如礦產、水源和能源)的過程,對于能源、礦產和環境管理至關重要。傳統的地質勘探方法往往昂貴、耗時且危險,但近年來,隨著技術的發展,無人機光譜影像技術的出現為地質勘探帶來
    的頭像 發表于 01-31 14:10 ?545次閱讀
    <b class='flag-5'>無人機</b><b class='flag-5'>高</b><b class='flag-5'>光譜</b>影像在地質勘探<b class='flag-5'>中</b>的應用

    無人機光譜影像是否真的可以提升農業生產效率?

    農業是全球經濟的重要組成部分,而提高農業生產效率一直是農業領域的重要挑戰之一。隨著科技的不斷發展,無人機光譜影像技術逐漸引起了廣泛關注。這項技術利用
    的頭像 發表于 01-30 11:53 ?456次閱讀
    <b class='flag-5'>無人機</b><b class='flag-5'>高</b><b class='flag-5'>光譜</b>影像是否真的可以提升農業生產效率?

    基于無人機光譜影像的黑土區玉米農田土壤有機質估算

    基于無人機光譜影像的黑土區玉米農田土壤有機質估算 引言 東北黑土區作為我國重要的糧食生產優勢區及商品糧供給地,玉米作為其主要作物之一,每年的產量占全國總產量的30%以上。長期以來對黑
    的頭像 發表于 01-23 17:47 ?626次閱讀
    基于<b class='flag-5'>無人機</b><b class='flag-5'>高</b><b class='flag-5'>光譜</b>影像的黑土區玉米<b class='flag-5'>農田</b>土壤有機質估算

    [萊森光學]使用無人機光譜成像系統進行地表監測

    近年來,隨著遙感技術的迅速發展和無人機(Unmanned Aerial Vehicle,UAV)技術的普及,使用無人機搭載光譜成像系統進行地表監測
    的頭像 發表于 01-17 13:51 ?398次閱讀
    [萊森光學]使用<b class='flag-5'>無人機</b><b class='flag-5'>高</b><b class='flag-5'>光譜</b>成像系統進行地表<b class='flag-5'>監測</b>

    針對無人機成像應用的鏡頭設計

    無人機成像的另一個重要應用是:植被的多光譜光譜成像。多光譜成像是在多個單獨的波長區域收集數據,而
    的頭像 發表于 01-14 14:03 ?1208次閱讀
    針對<b class='flag-5'>無人機</b>成像應用的鏡頭設計

    無人機光譜相機有什么用

    無人機光譜相機是一種搭載在無人機上,能夠同時捕捉多個波長光譜的高分辨率圖像的技術。這種相機具有許多應用領域,包括農業、環境監測、城市規劃和
    的頭像 發表于 01-11 11:22 ?2428次閱讀