精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

小編科普一下關于鎖相環的一些概念

FPGA設計論壇 ? 來源:FPGA設計論壇 ? 作者:FPGA設計論壇 ? 2022-07-03 15:10 ? 次閱讀

鎖相環的一些概念

1、捕獲、鎖定與跟蹤的概念

捕獲,是指從輸入信號加到鎖相環輸入端開始開始,一直到環路達到鎖定的全過程。

鎖相環的鎖定是指鎖相環的輸出頻率等于輸入頻率,而輸出信號的相位跟隨輸入信號的變化而變化。

跟蹤是指鎖相環鎖定后的狀態,一旦鎖相環進入鎖定狀態,若輸入信號產生了相位的變化,環路就調整壓控振蕩器的控制電壓使得其輸出信號的相位跟隨輸入信號的相位變化,即保持恒定的穩態相位差。這種狀態稱為跟蹤或同步狀態。

2、捕獲時間和穩態相差

捕獲時間是指捕獲過程所需的時間。捕獲時間的大小不僅與環路參數有關,而且與起始狀態有關。

當環路進入同步狀態之后,環內被控振蕩器的振蕩器頻率已經等于輸入信號的頻率,兩者之間只差一個固定的相位。這個相位差稱為穩態相差。反過來說,若穩態相差為一個常數或等于0,則說明環路處于鎖定狀態。

3、相位捕獲和頻率捕獲

“相位捕獲”指在捕獲過程中,相位沒有經過2π的周期跳躍就能進入的鎖定狀態,即捕獲過程小于一個2π周期的捕獲過程稱為相位捕獲,又稱快捕獲。“頻率捕獲”指捕獲經歷一個以上的頻率周期的捕獲過程。即意味著環路的輸入信號頻率與輸出信號頻率在開始捕獲前相差至少一個周期。一般來說,一個鎖相環從捕獲到鎖定都要經歷從頻率捕獲到相位捕獲兩個過程。

如下圖的快捕范圍就是快捕帶,只有相位捕獲,因此收斂較快,而除快捕范圍的捕獲帶則首先要進行頻率捕獲,然后才是相位捕獲。頻率捕獲相對來說是一個慢的過程,因此收斂較慢。

4、捕獲帶和同步帶

捕獲帶是指保證環路必然進入鎖定的最大固有頻差值。換句話說,就是在保證環路不出現穩定的差拍狀態所允許的最大固有頻差值。

一旦環路進入鎖定狀態,系統就處于跟蹤狀態。隨著輸入信號的頻率和相位的變化,環路應該始終能跟蹤其變化,但一旦輸入信號的頻率與被控壓控振蕩器的自由振蕩器頻率相差太多,環路就會失去跟蹤能力,這種狀態稱為“失鎖”。

同步帶是指系統保持同步的最大固有頻差值

5、最大頻率階躍范圍

描述PLL對于穩定工作狀態的動態限制。環路初始處于鎖定狀態,當輸入信號的頻率發生階躍變化的幅度在失鎖帶的范圍之內,環路能夠保持鎖定。然而,當輸入信號的頻率發生階躍變化的幅度超出失鎖帶的范圍,環路不能保持鎖定,輸出信號無法跟蹤輸入參考信號。當然,通過緩慢的捕獲過程,環路可再次入鎖。

ffb81244-f206-11ec-ba43-dac502259ad0.png

鑒相器

ffcbfe80-f206-11ec-ba43-dac502259ad0.png

關于鑒頻器介紹一下2種鑒頻器:

鑒頻器1,二象限反正切函數,

優點:最準確的鑒相方法,實際相位差異位于-90°至+90°的范圍之內時,該鑒相器的工作保持線性,并且其輸出的鑒相結果與信號幅值無關。

缺點:需要進行反正切求值,因而它也是計算量最大的一種。

鑒頻器2

ffde0c9c-f206-11ec-ba43-dac502259ad0.png

優點:計算量小, 適合純邏輯實現

缺點:鑒頻近似準確,鑒相結果與

成正比,并且與信號幅值有關

環路濾波器 和 頻率可變振蕩器 與鎖頻環一樣,不在重復敘述

Matlab 程序

在鎖頻環的程序基礎上添加鎖相環,設定前面500ms是鎖頻環工作,將頻率快速的拉到接近的范圍,然后切換到鎖相環,期間在1s的時候頻率突變10Hz,在2s的時候突變30Hz,在3s的時候突變100Hz,來理解快捕范圍,頻率階躍、捕獲帶等這些概念。為了顯示更加清楚,這里就不加碼元信息

format long g;

clc;clear all;close all

SampleClk = 4.1e6;

PointNum = SampleClk*5;

IF = 1e6- 240 ;

Carr_cos(1:SampleClk) = cos(2*pi*(IF/SampleClk).*[1:SampleClk] + 0);

Carr_sin(1:SampleClk) = sin(2*pi*(IF/SampleClk).*[1:SampleClk] + 0);

IF = IF + 10;

Carr_cos(1+SampleClk:PointNum) = cos(2*pi*(IF/SampleClk).*[SampleClk+1:PointNum] + 0);

Carr_sin(1+SampleClk:PointNum) = sin(2*pi*(IF/SampleClk).*[SampleClk+1:PointNum] + 0);

IF = IF + 30;

Carr_cos(1+2*SampleClk:PointNum) = cos(2*pi*(IF/SampleClk).*[2*SampleClk+1:PointNum] + 0);

Carr_sin(1+2*SampleClk:PointNum) = sin(2*pi*(IF/SampleClk).*[2*SampleClk+1:PointNum] + 0);

IF = IF + 100;

Carr_cos(1+3*SampleClk:PointNum) = cos(2*pi*(IF/SampleClk).*[3*SampleClk+1:PointNum] + 0);

Carr_sin(1+3*SampleClk:PointNum) = sin(2*pi*(IF/SampleClk).*[3*SampleClk+1:PointNum] + 0);

signal0 = Carr_cos +j*Carr_sin;

data = awgn(signal0,-5,'measured');

n = SampleClk/1000;

num=1000;

a=rand(1,num);

a(a>0.5)=1;

a(a<=0.5)=-1;

% for m = 1 1000

% data(m*n+1:(m + 1)*n) = a(m)*data(m*n+1:(m + 1)*n);

% end

fc = 1e6;

n = SampleClk/1000;

nf = floor(length(data)/n);

FAccCarReg0 = 0;

PAccCarReg0 = 0;

frame = 0;

FLL_BL = 100;

PLL_BL = 20;

tc1 = 1/1000;

k1 = 1;

[d0,d1] = Fil2ndPara(k1,FLL_BL,tc1);

[c0,c1] = Fil2ndPara(k1,PLL_BL,tc1);

df(1:nf) = 0;

df1(1:nf) = 0;

PQaccu = 0;

PIaccu = 0;

fll = 0;

pll = 0;

carr_accu = 0;

counter = 1;

init_carr_freq = fc;

for frame = 1 : nf

% frame

carr_freq = init_carr_freq + fll + pll;

for clk = 0 : n-1

%clk

carr_accu = rem(carr_accu,1);

cosine = cos(2*pi*(carr_accu));

sine = sin(2*pi*(carr_accu));

baseband = (data(((frame-1)*n+clk+1))).*(cosine -j*sine);

PI_clk = real(baseband);

PQ_clk = imag(baseband);

PQaccu = PQaccu + PQ_clk;

PIaccu = PIaccu + PI_clk;

carr_accu = carr_accu + carr_freq/SampleClk;

end

PQ(frame) = PQaccu;

PI(frame) = PIaccu;

if PI(frame) == 0

PI(frame) = 0.0000001;

end

PQaccu = 0;

PIaccu = 0;

if frame <5?

fll = 0;

pll = 0;

elseif(frame <500 )

df(frame) = FrqErr(PI,PQ,frame);

[fll,FAccCarReg0] = Fil2nd(d0,d1,FAccCarReg0,df(frame));

else

df1(frame) = PhaErr(PI,PQ,frame);

[pll,PAccCarReg0] = Fil2nd(c0,c1,PAccCarReg0,df1(frame));

end

fll_frame(frame) = fll + pll;

end

figure(1)

plot(fll_frame);

figure(4)

plot(PI);

hold on

plot(PQ);

hold on

figure(5)

plot(atan(PQ./PI))

從頻率跟蹤圖可以明顯的看出

在500ms鎖頻環轉鎖相環的時候,誤差頻率很小,因此處于快捕帶,只需要對相位進行捕獲,收斂很快。在1s的時候,頻率突變10Hz,環路仍然保持鎖定,很快便調整到了正確的頻率,因此10Hz屬于最大階躍范圍內,2s的時候,頻率突變30Hz,很明顯的頻率出現了震蕩,這就是失鎖了,但仍處于捕獲帶內,因此花了一點時間又重新鎖定到正確的頻率上,最后,頻率突變100Hz,則直接跳出了捕獲帶之外,無法重新鎖定了。

從I/Q幅度圖以及鑒相值可以看出

在500ms和1s的時候,相位沒有出現2*pi的翻轉,而在2s的時候出現了多次的2pi的翻轉,這也印證了最開始介紹鎖相環的概念中的 頻率捕獲和相位捕獲的內容。

IQ幅度圖:

fff2fc4c-f206-11ec-ba43-dac502259ad0.png

鑒相值圖:

000d0236-f207-11ec-ba43-dac502259ad0.png

原文標題:FPGA學習-數字鎖相環

文章出處:【微信公眾號:FPGA設計論壇】歡迎添加關注!文章轉載請注明出處。

審核編輯:劉清

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 鎖相環
    +關注

    關注

    35

    文章

    583

    瀏覽量

    87699
  • pll
    pll
    +關注

    關注

    6

    文章

    775

    瀏覽量

    135054
  • 鑒頻器
    +關注

    關注

    1

    文章

    27

    瀏覽量

    33135
收藏 人收藏

    評論

    相關推薦

    鎖相環PLL的工作原理 鎖相環PLL應用領域

    鎖相環(Phase-Locked Loop,簡稱PLL)是種電子電路,它能夠自動調整輸出信號的相位,使其與輸入信號的相位同步。這種電路在電子工程領域有著廣泛的應用,特別是在頻率合成、時鐘恢復、調制
    的頭像 發表于 11-06 10:42 ?286次閱讀

    簡述鎖相環的基本結構

    鎖相環(Phase-LockedLoop, PLL),是種反饋控制電路,電子設備正常工作,通常需要外部的輸入信號與內部的振蕩信號同步,利用鎖相環路就可以實現這個目的,它可用來從固定的低頻信號生成穩定的輸出高頻信號。
    的頭像 發表于 08-06 15:07 ?519次閱讀
    簡述<b class='flag-5'>鎖相環</b>的基本結構

    鎖相環鎖相放大器的區別

    鎖相環(Phase-Locked Loop, PLL)和鎖相放大器(Lock-in Amplifier)是兩種在電子學和信號處理領域廣泛應用的技術,它們各自具有獨特的工作原理、組成結構以及應用場景。以下將從定義、組成、工作原理、性能特點及應用領域等方面詳細闡述
    的頭像 發表于 07-30 15:51 ?1003次閱讀

    鎖相環相位噪聲的影響因素

    鎖相環(Phase Locked Loop, PLL)相位噪聲是評估鎖相環性能的重要指標之,它描述了輸出信號相位的不穩定性。相位噪聲的存在會直接影響系統的性能,如降低信號的信噪比、增加誤碼率、影響雷達系統的目標分辨能力等。以下
    的頭像 發表于 07-30 15:31 ?1154次閱讀

    EPSON(愛普生)獲得高頻輸出的方法(第部:鎖相環電路)

    EPSON(愛普生)獲得高頻輸出的方法(第部:鎖相環電路)
    的頭像 發表于 06-20 10:42 ?438次閱讀
    EPSON(愛普生)獲得高頻輸出的方法(第<b class='flag-5'>一</b>部:<b class='flag-5'>鎖相環</b>電路)

    鎖相環的基本原理和主要作用

    鎖相環(Phase Locked Loop,簡稱PLL)是種在電子系統中廣泛應用的負反饋控制系統,其主要作用是實現輸入信號與輸出信號之間的相位同步。在現代通信、雷達、導航、測量等領域,鎖相環都發
    的頭像 發表于 05-24 16:28 ?3352次閱讀

    鎖相環和鑒相器的電路原理和結構?

    請問在電子電路中鎖相環和鑒相器的電路結構是什么樣的?它是如何實現此電路功能的?可否詳細解釋一下
    發表于 02-29 22:34

    鎖相環的輸入輸出相位致嗎?

    鎖相環是保證相位致,還是相位差致?鎖相環的輸入輸出相位致嗎? 鎖相環(PLL)是
    的頭像 發表于 01-31 15:45 ?1044次閱讀

    鎖相環鎖定后定不存在頻差嗎?

    鎖相環鎖定后定不存在頻差嗎? 鎖相環種常用的控制系統,用于將輸入信號與參考信號之間的相位誤差維持在個可接受的范圍內。它通過調節輸出信
    的頭像 發表于 01-31 15:25 ?744次閱讀

    鎖相環到底鎖相還是鎖頻?

    方式有時會導致一些誤解,有人認為它實際上是鎖頻而非鎖相。在本文中,我將詳細解釋為什么鎖相環既是鎖頻又是鎖相,并解釋兩者之間的區別。 首先,讓我們了解
    的頭像 發表于 01-31 15:25 ?1794次閱讀

    為什么說鎖相環相當于個窄帶跟蹤濾波器

    鎖相環路與自動頻率控制電路有何區別?為什么說鎖相環相當于個窄帶跟蹤濾波器 鎖相環路(PLL)和自動頻率控制電路(AFC)是常見的頻率調節電路,它們的主要區別在于功能和應用場景。 首先
    的頭像 發表于 01-31 15:24 ?990次閱讀

    鎖相環同步帶與捕獲帶有區別嗎?

    鎖相環同步帶與捕獲帶有區別嗎? 鎖相環(簡稱PLL)同步帶和捕獲帶是鎖相環中兩個重要的工作模式,它們在功能和應用上存在一些區別。 1. 定義和原理: -
    的頭像 發表于 01-31 11:31 ?1137次閱讀

    數字鎖相環技術原理

    數字鎖相環(DigitalPhase-LockedLoop,簡稱DPLL)是種基于反饋控制的技術,用于實現精確的時序控制和相位同步。通過相位比較、頻率差計算、頻率控制、濾波和循環控制,它能夠完成
    的頭像 發表于 01-02 17:20 ?1876次閱讀
    數字<b class='flag-5'>鎖相環</b>技術原理

    鎖相環PLL是什么?它是如何工作的?

    今天想來聊一下芯片設計中的個重要macro——PLL,全稱Phase lock loop,鎖相環。我主要就介紹一下它是什么以及它是如何工作的。
    的頭像 發表于 12-06 15:21 ?1661次閱讀

    硬件電路設計之鎖相環電路設計

    鎖相環種 反饋系統 ,其中電壓控制振蕩器和相位比較器相互連接,使得振蕩器頻率(相位)可以準確跟蹤施加的頻率或相位調制信號的頻率。鎖相環可用來從固定的低頻信號生成穩定的輸出頻率信號。首批鎖相
    的頭像 發表于 11-30 15:01 ?2391次閱讀
    硬件電路設計之<b class='flag-5'>鎖相環</b>電路設計