最近在做一個有趣的小項目,其中有一小部分的內容的是使用FFT做音樂頻譜顯示。于是就有了下面這個音樂頻譜顯示的低成本方案,話不多說看看低成本MCU如何實現FFT音樂頻譜顯示吧。
音頻采集的硬件電路比較簡單,主要的器件就是麥克風和LM358運放。
圖中電路R5可調電阻的作用是來調節運放的增益。R4的作用的是給運放一個VDD*R4/(R3+R4) 的直流偏置,這里加直流偏置是由于ADC只能采集正電壓值,為了不丟失負電壓的音頻信號,給信號整體加了一個直流偏置。
但是這個圖還有一個小問題,運放的輸出端加了一個電容C2,C2會把直流偏置給隔掉。在設計時,這個電容可以去掉。
下圖是按照上圖搭建的音頻采集電路的輸出信號,圖中波動信號是施加的外部音頻,是我們需要做音樂頻譜顯示需要的信號。該信號有一個2.3v的直流偏置,在后續處理時需要減去這個偏置。
為了呼應標題,我們選擇的MCU是LPC845,這是NXP的一款低成本的MCU。考慮到我們平常聽的音樂頻率大都低于5kHz,在軟件設計時設置ADC采樣頻率為10kHz。不要問為什么,問就是采樣定理。
LPC845的ADC有8個觸發源,我們使用CTiimer match3來觸發ADC,將寄存器SEQA_CTRL的bit 14:12設置為0x5。CTimer match 3的輸出頻率為10kHz。
為了確保我們采集數據的實時性,DMA建議配置成雙buffer模式,以防止采樣的數據被覆蓋掉。
FFT音頻信號處理
在DMA搬運ADC采樣值時,使用了雙buffer來搬,ADC采樣值需要減去一個2.3V的直流偏置。Samples[]數組用于FFT計算。
//Calculate the FFT input buffer if(g_DmaTransferDoneFlag_A == true) { for (i=0; i<128; i++) { Samples[i] =(int16_t)(((g_AdcConvResult_A[i] & 0xfff0) >> 4) - 2979);//substract the 2.3v offset in the Amplifier output } g_DmaTransferDoneFlag_A = false; } else if(g_DmaTransferDoneFlag_B == true) { for (i=0; i<128; i++) { Samples[i] =(int16_t)(((g_AdcConvResult_B[i] & 0xfff0) >> 4) - 2979);//substract the 2.3v offset in the Amplifier output } g_DmaTransferDoneFlag_B = false; }
根據FFT算法的原理,在進行FFT計算之前,還需要將ADC的采樣值Samples[]乘上一個窗函數,這里我們使用的漢寧窗函數,由于篇幅限制,具體原理可以去查看FFT算法相關的資料。
//If 'Window' isn't rectangular, apply window if(Window == Triangular){ //Apply a triangular window to the data. for(Cnt = 0; Cnt>L2Len; else Samples[Cnt] = ((int32_t)Samples[Cnt]*((Len/2)-Cnt))>>L2Len; } } else if(Window == Hann){ //Use the cosine window wavetable to apply a Hann windowing function to the samples for(Cnt = 0; Cnt >L2Len; Samples[Cnt] = ((int32_t)Samples[Cnt]*(int32_t)CosWindow[Index])>>(CWBD); } }
前面說了這么多,FFT算法才是實現音樂頻譜顯示的關鍵部分(其實上邊每一步都缺一不可)。
我在網上找了好多FFT算法的資料,大家在做頻譜顯示時,用到最多的就是CMSIS DSP的算法庫。于是乎,采用CMSIS DSP的庫貌似是首選。
但是不用不知道,一用才發現,由于CMSIS DSP的庫使用的是查表的方式,我的64K Flash的LPC845輕輕松松就被撐爆了。沒辦法,只能改用其他方案。經過不懈的查閱資料,在GitHub找到一份FFT算法的代碼,這個代碼寫的非常簡潔,而且用起來很好用,感謝發布者pyrohaz,下面是FFT代碼的一部分。
/* FIX_MPY() - fixed-point multiplication & scaling. Substitute inline assembly for hardware-specific optimization suited to a particluar DSP processor. Scaling ensures that result remains 16-bit. */ inline short FIX_MPY(short a, short b) { /* shift right one less bit (i.e. 15-1) */ int c = ((int)a * (int)b) >> 14; /* last bit shifted out = rounding-bit */ b = c & 0x01; /* last shift + rounding bit */ a = (c >> 1) + b; return a; }
fix_fft(short fr[], short fi[], short m, short inverse)函數,FFT計算函數
int fix_fft(short fr[], short fi[], short m, short inverse) { int mr, nn, i, j, l, k, istep, n, scale, shift; short qr, qi, tr, ti, wr, wi; n = 1 << m; /* max FFT size = N_WAVE */ if (n > N_WAVE) return -1; mr = 0; nn = n - 1; scale = 0; /* decimation in time - re-order data */ for (m=1; m<=nn; ++m) { l = n; do { l >>= 1; } while (mr+l > nn); mr = (mr & (l-1)) + l; if (mr <= m) continue; tr = fr[m]; fr[m] = fr[mr]; fr[mr] = tr; ti = fi[m]; fi[m] = fi[mr]; fi[mr] = ti; }
接 fix_fft(short fr[], short fi[], short m, short inverse)函數
l = 1; k = LOG2_N_WAVE-1; while (l < n) { if (inverse) { /* variable scaling, depending upon data */ shift = 0; for (i=0; i16383 || m > 16383) { shift = 1; break; } } if (shift) ++scale; } else { /* fixed scaling, for proper normalization -- there will be log2(n) passes, so this results in an overall factor of 1/n, distributed to maximize arithmetic accuracy. */ shift = 1; }
接fix_fftr(short f[], int m, int inverse)函數
/* it may not be obvious, but the shift will be performed on each data point exactly once, during this pass. */ istep = l << 1; for (m=0; m>= 1; wi >>= 1; } for (i=m; i >= 1; qi >>= 1; } fr[j] = qr - tr; fi[j] = qi - ti; fr[i] = qr + tr; fi[i] = qi + ti; } } --k; l = istep; } return scale; }
/* fix_fftr() - forward/inverse FFT on array of real numbers. Real FFT/iFFT using half-size complex FFT by distributing even/odd samples into real/imaginary arrays respectively. In order to save data space (i.e. to avoid two arrays, one for real, one for imaginary samples), we proceed in the following two steps: a) samples are rearranged in the real array so that all even samples are in places 0-(N/2-1) and all imaginary samples in places (N/2)-(N-1), and b) fix_fft is called with fr and fi pointing to index 0 and index N/2 respectively in the original array. The above guarantees that fix_fft "sees" consecutive real samples as alternating real and imaginary samples in the complex array. */ int fix_fftr(short f[], int m, int inverse) { int i, N = 1<<(m-1), scale = 0; short tt, *fr=f, *fi=&f[N]; if (inverse) scale = fix_fft(fi, fr, m-1, inverse); for (i=1; i
int fix_fft(short fr[], short fi[], short m, short inverse) 是FFT算法的計算函數,fr[]是ADC采集到信號值的實部,fi[]是ADC采集到信號值的虛部。經過fix_fft函數處理之后,fr[]是FFT計算所得實部,fi[]是計算所得的虛部。
我們最終要顯示的音樂頻譜其實是FFT頻域中音頻的幅值,幅值的計算是實部的平方+虛部的平方開根號。下面是具體的幅值計算部分的代碼,每一個幅值點對應OLED的一列像素點。
//Calculate the magnitude for(Cnt = 0; Cnt>ColumnFilter; //calculate the DB } else{ Col[Index] += (BufSum-Col[Index])>>ColumnFilter; //calculate the amplitude } //Limit maximum column value if(Col[Index] >= YPix-9) Col[Index] = YPix-10; IndO = Index; BufSum = 0; } }
審核編輯:彭靜
-
mcu
+關注
關注
146文章
16667瀏覽量
347784 -
硬件電路
+關注
關注
39文章
238瀏覽量
29114 -
音樂頻譜
+關注
關注
1文章
13瀏覽量
8923
原文標題:如何用低成本MCU實現音樂頻譜顯示
文章出處:【微信號:NXP_SMART_HARDWARE,微信公眾號:恩智浦MCU加油站】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論