精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

邊緣AI落地過程中遇到哪些難點

lPCU_elecfans ? 來源:電子發燒友網 ? 作者:電子發燒友網 ? 2022-09-19 10:30 ? 次閱讀

電子發燒友網報道(文/李彎彎)所謂邊緣AI,是指在端側設備本身,而不是在云端或大型數據中心服務器上運行推理。因為對算力的要求很高,最初AI基本都在云端進行訓練和推理。然而因為數據必須上傳至云端,這就帶來了數據隱私等多方面的問題。

因此邊緣AI的應用需求越來越強勁,在邊緣端進行AI推理,處理數據的過程就不必上傳至云端,這樣能夠很好地保障數據隱私和數據安全,還能避免系統受到惡意網絡攻擊,而且還能夠消除處理延遲,減少數據傳輸量和帶寬。

邊緣AI芯片市場規模在提升

邊緣AI涉及的應用范圍非常廣泛,包括智慧家居中的家庭安全監控、老人兒童監護、智能鎖可視門鈴、掃地機器人避障等,智慧零售中智慧門店的客流和客層分析、新老客戶及會員識別、操作人員穿戴檢測、異常行為檢測,以及無人售貨柜的人臉識別開柜、識別商品并自動結算等,還有智慧農業、機器人、智慧教育等諸多領域各種場景中的應用等等。

這其中對AI芯片的需求巨大,數據顯示,預計到2025年,邊緣AI芯片市場的收入將達到122億美元,云端AI芯片市場的收入達119億美元,邊緣AI芯片市場將超過云端。

因此過去幾年,一些傳統的芯片企業及初創企業都加入到邊緣AI芯片行列,包括AMD英特爾英偉達NXP、ST、谷歌,以及國內的寒武紀、地平線、鯤云科技等。

因為看好邊緣端的應用市場,谷歌早2018年就發布了用于邊緣計算的微型AI加速芯片Edge TPU,用于在邊緣設備上運行TensorFlow Lite ML模型進行推理。它在較小的物理和功耗范圍內提供高性能,并在邊緣部署高精度AI,能夠使用戶以高效率的方式在高分辨率視頻上以每秒30幀的速度同時執行多幀最先進的AI模型。

Edge TPU結合了定制硬件、開放軟件和先進的AI算法,為邊緣提供高質量、易于部署的AI解決方案。該芯片具有較高的每瓦性能和較小的占地面積,用于預測性維護、異常檢測、機器視覺、機器人、語音識別等,可應用于制造、醫療保健、零售、智能空間、運輸等領域。

英偉達過去幾年也推出了多款邊緣AI產品。2019年英偉達就推出了Jetson Nano,專為支持入門級邊緣AI應用程序和設備設計,能夠同時并行運行多個神經網絡應用,例如圖像分類、目標檢測、物體分割和自然語言處理等,其運行功耗僅為5瓦。

英偉達推出的基于 Jetbot Jetson Nano(含2GB)的智能無人車教學系統,在 NVIDIA GTC 2019 年大會上,這個項目現場演示了避障 、循路與遇障停止等功能。

2019年英偉達還發布了Jetson Xavier NX,這是一個用于在無人機、汽車和機器人等邊緣設備上的AI系統模塊,可以為AI工作負載提供21 TOPS的算力,功耗最高僅為15瓦,Jetson Xavier NX的應用場景主要是小型商用機器人、無人機、高分辨率傳感器光學檢測、網絡錄像機、便攜式醫療設備以及其他工業物聯網系統。

在2021年11月份的GTC大會上,英偉達又發布了一款體積小、功能強的人工智能超級計算機NVIDIA Jetson AGX Orin,專為機器人、自主機器、醫療器材及嵌入式邊緣運算場景設計。Jetson AGX Orin采用NVIDIA Ampere架構GPUArm Cortex-A78AE CPU以及新一代深度學習和視覺加速器。其AI性能達到200 TOPS,功耗最低可達到15W,最高為50W,這使其成為下一代自主機器(如交付和物流機器人、工廠系統和大型工業無人機)的首選解決方案。

寒武紀在2019年也推出了其首款邊緣AI芯片思元220(MLU220)芯片。這是一款專門用于深度學習的SOC邊緣加速芯片,采用TSMC 16nm工藝,采用寒武紀在處理器架構領域的一系列創新性技術。其架構為寒武紀最新一代智能處理器MLUv02,實現最大32TOPS(INT4)算力,而功耗僅10瓦。此外,基于思元220,寒武紀面向市場還推出小尺寸的M.2加速卡。

思元220芯片可提供16/8/4位可配置的定點運算,客戶可根據應用靈活選擇運算類型來獲得卓越的人工智能推理性能。在軟件方面,通過端云一體的軟件平臺,思元220支持寒武紀Neuware軟件工具鏈,支持各主流編程框架,包括Tensorflow,Caffe,mxnet,及pytorch等。

自動駕駛這類邊緣場景上,近幾年AI芯片的發展也在加速,主要的廠商包括英偉達、高通、英特爾、地平線等。地平線是國內入局較早的企業,2019年地平線就發布了國內首款已量產車規級邊緣AI視覺芯片征程2.0,該芯片等效算力超過4TOPS,典型功耗僅為2W,采用地平線二代BPU架構,能實現多類AI任務處理,并對多類目標實時監測和精準識別。

如今地平線第三代車規級自動駕駛芯片征程5即將量產,征程5搭載地平線最新一代BPU貝葉斯深度學習加速引擎,單顆芯片AI算力高達128TOPS。憑借高算力的征程5的正式推出,地平線成為了國內少有的能夠覆蓋從L2到L4智能駕駛芯片方案的提供商。

邊緣AI落地面臨哪些難題雖然邊緣AI 應用場景豐富,過去幾年邊緣AI芯片市場規模也在快速提升,不過從目前的情況來看,邊緣AI在落地方面還面臨一些問題。

在此前某論壇上,齊感科技市場營銷副總裁刁勇就談到了AI邊緣視覺應用落地的幾個挑戰。他說現在AI視覺應用在邊緣側的落地場景非常多,比如智能攝像機、智能門鎖、邊緣分析盒子等都是非常常見的應用場景,如今的市場規模也相當大,這些場景對AI視覺也提出了很高的要求,比如需要較高的集成度,對滿足算力下的功耗的要求也很高。

齊感科技的AI視覺SOC為了滿足這些場景的要求,也在不斷提高集成度,比如其第一代的AI視覺SOC芯片,在片上ARM內核的基礎上,集成了豐富的視覺相關的IP,包括視頻處理單元ISP、AI加速器NPU,視覺編解碼等,以及各種以太網DDR接口

整體來說,齊感科技邊緣側視覺SOC,相對來說集成度、復雜度相當高。刁勇表示,即使如此,在與客戶接觸交流的時候發現,客戶用這樣的芯片,快速開發相對應的AI視覺邊緣側最終的產品,還是存在蠻大的挑戰。

根據客戶的痛點,可以總結出三點:一是復雜的邊緣側SOC和復雜的硬件系統設計,對于客戶來說是非常大的挑戰;二是AI算法,因為邊緣側應用場景比較多,算法相對來說要求比較多;三是邊緣側的應用場景非常多元化、碎片化,怎么利用之前的經驗來應對不同的場景的需求,也是一個很大的挑戰。

對于現在邊緣AI在落地方面的困難,有行業人士也向電子發燒友表示,主要體現在幾個方面:其一,當前邊緣AI還缺乏整體的解決方案,大量供應商的算力、算法和應用是割裂的,最終用戶能看到的滿足落地需求的選擇不多。我們知道,現在很多情況,算力和算法由不同的廠商提供,而且提供算力和算法的廠商,對一些行業的應用場景不熟悉,理解不夠。

其二,邊緣端也缺乏針對性的AI算力,現在很多情況,是在原來SOC的基礎上增加AI引擎,這種方式很難滿足邊緣AI算力的需求。一般來說,目前SOC的AI算力普遍在4T以下,現在也有一些能夠達到6T,這確實能夠滿足一些場景的應用,不過很多邊緣端場景對算力的需求普遍在8T到20T,可見合適算力的邊緣AI芯片還處于缺乏狀態。

總結來說,邊緣AI應用場景比較多元、長尾化,行業屬性比較明顯。在算法方面,不同場景對算法的需求不同,要求比較高;在算力方面,很多情況由SOC添加AI引擎的方式提供算力,一些場景對SOC算力集成度、功耗的要求高,同時非常多場景SOC的算力不足以支持應用,而對于客戶來說,有針對性的邊緣算力芯片還不夠;另外算法、算力割裂的情況,以及對應用場景累積不夠的情況,也是當前邊緣AI落地過程中遇到的難點。

小結從目前的情況來看,邊緣AI的應用場景越來越豐富,并且在諸多方面已經形成規模。不過整體而言,邊緣AI應用場景碎片化明顯,對算法要求高,目前還存在針對性算力缺乏,整體解決方案缺乏等問題,對于芯片、算法廠商來說,還需要繼續投入研發,邊緣AI供應商們也需要有足夠耐心,需要足夠下沉,去真正理解不同行業的切實需求。

審核編輯:彭靜
聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 芯片
    +關注

    關注

    454

    文章

    50430

    瀏覽量

    421892
  • 數據
    +關注

    關注

    8

    文章

    6898

    瀏覽量

    88839
  • AI
    AI
    +關注

    關注

    87

    文章

    30172

    瀏覽量

    268439
  • 自動駕駛
    +關注

    關注

    783

    文章

    13687

    瀏覽量

    166154

原文標題:谷歌、寒武紀早早入局!邊緣AI仍面臨這些落地難題!

文章出處:【微信號:elecfans,微信公眾號:電子發燒友網】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    使用ADS1299的過程中遇到的疑問求解

    我在使用ADS1299的過程中有一點疑問,需要您的幫助。 這是一張關于BIAS反饋回路的示意圖,在我的理解里這可以看作一個加減運算電路,我想知道的是,只關注它的反向輸入時,且暫時忽略1.5nF的電容,外部只加1M的電阻,它的放大倍數是多少? 期待您的回復!
    發表于 11-15 06:35

    【書籍評測活動NO.49】大模型啟示錄:一本AI應用百科全書

    了第一期“AI顛覆軟件討論會”,主題為“AI如何顛覆數據庫行業”。經過一年半間,舉辦了20期討論會,每期都邀請產業一線從業者和社群成員、公眾號關注者共同參與。 在本書的編撰過程中,作者們還邀請了數十位
    發表于 10-28 15:34

    制造業人工智能的場景應用落地現狀、難點和建議

    制造業應用人工智能可以提高制造業的生產效率,推動制造業高質量發展和競爭力提升,促進國民經濟的持續穩定增長。近年來,制造業人工智能的場景化應用落地不斷推進,但在落地過程中遇到一些
    的頭像 發表于 10-12 09:49 ?403次閱讀

    云天勵飛邊緣AI推動大模型規模化應用落地

    2024年毫無疑問是大模型應用落地元年,面對靈活多變的任務和復雜的場景環境,用邊緣AI打造低成本、高效能、強落地的大模型應用是關鍵。
    的頭像 發表于 09-18 14:59 ?368次閱讀

    AMD分析嵌入式邊緣AI的發展

    隨著人工智能( AI )技術廣泛應用于各行各業,從云到邊緣的解決方案逐漸成為信息技術領域新的熱點。嵌入式邊緣 AI 在當今的各種邊緣應用
    的頭像 發表于 09-18 09:30 ?278次閱讀
    AMD分析嵌入式<b class='flag-5'>邊緣</b><b class='flag-5'>AI</b>的發展

    什么是邊緣AI邊緣AI的供電挑戰

    RECOM 的 RACM1200-V 采用數字通信,可輕松集成到邊緣 AI設計
    的頭像 發表于 09-02 11:52 ?411次閱讀
    什么是<b class='flag-5'>邊緣</b><b class='flag-5'>AI</b>?<b class='flag-5'>邊緣</b><b class='flag-5'>AI</b>的供電挑戰

    使用VCA810過程中遇到的一些問題求解

    我在使用VCA810過程中遇到一些問題,請各位大神指點,具體如下: 1、控制電壓最小只能加到-1.7V,再減小的話輸出信號消失或者放大倍數驟然減小。 2、輸入端出現一個疊加在信號上的直流,輸出端直
    發表于 08-30 07:11

    電容充放電過程中電壓的變化規律

    電容充放電過程中電壓的變化規律是一個非常重要的電子學課題,涉及到電容器的基本工作原理和特性。在這篇文章,我們將詳細探討電容充放電過程中電壓的變化規律,包括電容的基本特性、充電過程、放
    的頭像 發表于 07-11 09:43 ?4484次閱讀

    使用PSoC5LP的過程中,遇到PSoC5LP在EFT干擾時復位的問題怎么解決?

    在我使用 PSoC5LP 的過程中(>8 年),我曾多次在驗證測試遇到 PSoC5LP 在 EFT 干擾時復位的問題。 大多數情況下,這取決于 XRES 引腳,因為 EFT 可以改變
    發表于 07-05 07:26

    英特爾發布全新邊緣計算平臺,解決AI邊緣落地難題

    電子發燒友網報道(文/李彎彎)AI越來越多地在邊緣側部署。Gartner最新預測數據顯示,到2025年,50%以上的企業管理數據將在數據中心或云之外創建和處理。隨著AI為自動化帶來更多機會,到
    的頭像 發表于 03-12 09:06 ?4276次閱讀
    英特爾發布全新<b class='flag-5'>邊緣</b>計算平臺,解決<b class='flag-5'>AI</b><b class='flag-5'>邊緣</b><b class='flag-5'>落地</b>難題

    NanoEdge AI的技術原理、應用場景及優勢

    :在工業生產過程中,NanoEdge AI 可以幫助實現對生產線的實時監控和故障預測,提高生產效率和降低維護成本。 3.智能交通:通過將 NanoEdge AI 應用于交通信號燈、無人駕駛汽車等設備
    發表于 03-12 08:09

    AI邊緣計算機應用場景廣泛!大語言模型與數字人結合方案在邊緣落地

    電子發燒友網報道(文/李彎彎)AI邊緣計算機是一種人工智能和邊緣計算技術相結合的計算機設備。它可以在本地設備上運行AI模型,實現對設備數據的實時分析和響應,從而減少數據傳輸到云端的延遲
    的頭像 發表于 01-16 01:11 ?4385次閱讀
    <b class='flag-5'>AI</b><b class='flag-5'>邊緣</b>計算機應用場景廣泛!大語言模型與數字人結合方案在<b class='flag-5'>邊緣</b>側<b class='flag-5'>落地</b>

    數字化轉型浪潮的挑戰與機遇:企業如何應對七大難點

    隨著技術的日益進步,企業數字化轉型已成為推動商業模式創新和運營優化的關鍵。盡管數字化轉型提供了無限的可能性,但過程中難點同樣不容小覷。下面,我們將逐一剖析企業轉型的七大難點,并提供
    的頭像 發表于 01-10 14:57 ?490次閱讀

    使用AD5293的過程中遇到的幾個問題求解

    我在使用AD5293的過程中遇到了以下幾個問題: 1.AD5293的VDD,VSS,VLOGIC引腳所連接的10uf的電容是有極性還是無極性的? 2.EXT_CAP引腳,在上電時對地電壓應該是
    發表于 12-11 08:21

    在使用AD4114過程中遇到的問題,請幫忙解答

    哈羅 在使用AD4114的過程中遇到問題,請幫忙解答。多謝! 1.設置AD4114為Continuous Conversion Mode和Continuous Read Mode時,連續讀回來通道數
    發表于 12-04 08:06