精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

產生糾纏光子的常見方法

IEEE電氣電子工程師 ? 來源:IEEE電氣電子工程師 ? 作者:IEEE電氣電子工程師 ? 2022-10-18 16:52 ? 次閱讀

產生量子糾纏的設備通常體積龐大,且每次只能產生一對糾纏光子。現在,科學家們發明了一種厚度約為一便士三分之一的裝置,它不僅可以成對產生復雜的糾纏光子網,還可以將多對糾纏光子連在一起。本發明不僅可以大大簡化量子技術所需的設置,而且有助于支持更復雜的量子應用。

據了解,產生糾纏光子的常見方法是將光束照射到一個特殊的“非線性晶體”上。每個晶體都可以將一個光子分裂成兩個能量較低、波長較長的糾纏光子。

“傳統的糾纏光子產生技術并不靈活,它們只能在通常非常窄的特定波長范圍內產生光子對,”合著者Maria Chekhova說,她是德國埃爾朗根馬普科學研究所的物理學家。這種窄帶寬會限制通信速率。

此外,Chekhova補充道,產生糾纏光子的標準方法最終決定了糾纏光子的許多特性,如波長和偏振。她解釋說,如果想進一步操縱這些特征,就需要更多的設備。另外,非線性晶體通常體積較大。對于需要許多糾纏光子的應用來說,這可能很麻煩。“一個量子計算源需要數十或數百個體積龐大的晶體,”研究共同發起人、Albuquerque Sandia國家實驗室集成納米技術中心的物理學家Igal Brener說。

科學家們現在發現,只有大約半毫米厚的設備就足夠了。這些設備是亞表面,表面覆蓋著大量的微觀柱子。Brener說:“我們只需要將一個或多個激光聚焦到一個平坦的樣品上,其余的都由亞表面完成。”

每一個亞表面都由一個500微米厚的玻璃表面組成,表面覆蓋著砷化鎵結構,每個亞表面都類似于約300納米寬的立方體,上面刻有缺口。調整每個亞表面納米結構的組成、結構和位置的方式可以幫助科學家控制落在器件上的光的許多特征。

將激光束照射到這些亞表面上會導致糾纏光子出現。Brener說:“原則上,一個亞表面可以產生幾種類型的糾纏光子對。使用多光子對創建更復雜的量子狀態可以帶來進行量子計算、傳感、加密等的新方法或更有效的方法。”

此外,亞表面可以操縱一系列糾纏光子的特征,“但我們還并沒有探索那個自由度,”Brener說,“機會是巨大的,我們還只觸及了表面。”

目前,這些亞表面的效率較低。Chekhova說:“我們的速率不到每秒一對,而標準晶體的速率為每秒數十萬對。” 然而,她指出,進一步改進設備可能會將效率提高至少千倍。

審核編輯:彭靜
聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 納米技術
    +關注

    關注

    2

    文章

    201

    瀏覽量

    25799
  • 光子
    +關注

    關注

    0

    文章

    110

    瀏覽量

    14421
  • 砷化鎵
    +關注

    關注

    4

    文章

    158

    瀏覽量

    19304

原文標題:Metasurfaces將有助于簡化量子信息技術 但也可以實現復雜的應用

文章出處:【微信號:IEEE_China,微信公眾號:IEEE電氣電子工程師】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    什么是光子學?

    ? 本文概述了光子學,包括其基本原理、關鍵技術、應用和新興趨勢。 一、光子學的基本原理 光子學是一門研究光和其他形式輻射能的學科。它涉及使用光學元件、激光、光纖和電子光學儀器來產生、操
    的頭像 發表于 10-29 06:21 ?123次閱讀

    糾纏光子對實現隱藏圖像編碼

    在《物理評論快報》(Physical Review Letters)雜志上。 糾纏光子在包括量子計算和密碼學在內的各種量子光子學應用中發揮著至關重要的作用。這些光子可以通過非線性晶體中
    的頭像 發表于 09-23 06:29 ?156次閱讀
    <b class='flag-5'>糾纏</b><b class='flag-5'>光子</b>對實現隱藏圖像編碼

    基于time-bin量子比特的高速率多路糾纏源——PPLN晶體應用

    基于time-bin量子比特的高速率多路糾纏源PPLN晶體應用隨著量子計算的不斷發展,對于現代公鑰加密的威脅也逐漸明顯起來。而量子密鑰分發(QKD)是克服這一威脅的方法之一,通過允許在多方之間安全地
    的頭像 發表于 08-30 12:27 ?178次閱讀
    基于time-bin量子比特的高速率多路<b class='flag-5'>糾纏</b>源——PPLN晶體應用

    基于SPAD單光子相機的LiDAR技術革新

    光子光探測和測距(激光雷達)是在復雜環境中進行深度成像的關鍵技術。盡管最近取得了進展,一個開放的挑戰是能夠隔離激光雷達信號從其他假源,包括背景光和干擾信號。本文介紹了一種基于量子糾纏光子
    的頭像 發表于 07-04 08:16 ?747次閱讀
    基于SPAD單<b class='flag-5'>光子</b>相機的LiDAR技術革新

    測量誘導的儲存離子的糾纏

    。 如果散射光不包含其產生離子的信息(通過測量遠場實現),則可以觀察到該光源的一些有趣特性。如圖 1 所述,雙離子系統可以用 Dicke-Basis (Wolf et al. 2020)* 來描述。有趣的是,反對稱態|a>不耦合到激光場。該系統現在顯示了典型單光子發射
    的頭像 發表于 06-27 06:26 ?209次閱讀
    測量誘導的儲存離子的<b class='flag-5'>糾纏</b>

    使用光子糾纏的自適應光學成像

    實驗裝置 研究人員表示,量子物理學的獨特特性可以幫助解決一個長期存在的問題,即阻止顯微鏡在最小尺度上產生更清晰的圖像。這一突破利用光子糾纏創造了一種校正顯微鏡圖像失真的新方法,可以改善
    的頭像 發表于 04-23 06:33 ?232次閱讀
    使用<b class='flag-5'>光子</b><b class='flag-5'>糾纏</b>的自適應光學成像

    量子糾纏探測與大小估算研究新突破

    量子糾纏作為量子理論的基石,也是量子信息領域的寶貴資源。在實驗過程中,有效的糾纏探測和衡量對實現眾多關鍵信息任務,譬如如何高效地利用糾纏資源,至關重要。
    的頭像 發表于 04-02 09:34 ?357次閱讀

    無功補償的原理、作用及常見方

    無功補償的原理、作用及常見方式? 無功補償是電力系統中的一項重要技術措施,用于改善電力質量和提高能源利用效率。本文將詳細介紹無功補償的原理、作用以及常見的補償方式。 一、無功補償的原理 無功功率
    的頭像 發表于 01-19 14:19 ?8359次閱讀

    伺服電機應用中常見干擾類型和產生途徑

    伺服電機應用中常見干擾類型和產生途徑
    的頭像 發表于 01-07 17:56 ?1363次閱讀

    配置Kubernetes中Pod使用代理的兩種常見方

    的需要。本文將介紹配置Kubernetes中Pod使用代理的兩種常見方式:通過ConfigMap和直接在應用程序環境變量中設置。
    的頭像 發表于 01-05 11:22 ?1077次閱讀
    配置Kubernetes中Pod使用代理的兩種<b class='flag-5'>常見方</b>式

    光束整形的常見方法

    中,都對激光光束的均勻性有著一定的要求。然而激光器諧振腔輸出的光束呈高斯分布,這一特性使其往往不能被直接使用,需要通過光束整形來提高均勻性,以滿足應用的需求。目前激光光束整形方法主要包括光闌法、場映射法和多孔徑光束聚焦法。
    的頭像 發表于 12-29 13:45 ?664次閱讀

    首次實現按需分子之間的糾纏

    量子信息處理需要量子糾纏的受控產生和操縱。盡管各種原子、光子和超導平臺上已經實現了糾纏,但控制分子糾纏
    的頭像 發表于 12-20 11:26 ?343次閱讀
    首次實現按需分子之間的<b class='flag-5'>糾纏</b>

    淺談量子糾纏相關的量子應用

    為了證明分子的糾纏,作者測量了貝爾態創建保真度F。根據布居和宇稱振蕩測量,獲得了FRAW=0.540的原始貝爾態保真度,原始保真度和測量校正保真度均高于1/2,表明糾纏確實存在并按需創建。
    的頭像 發表于 12-15 10:24 ?851次閱讀

    Linux系統中調用腳本的常見方法

    在linux系統中有多種方法可以在系統啟動后調用腳本,接下來介紹幾種常見方法
    的頭像 發表于 12-13 18:16 ?1006次閱讀

    光子的量子糾纏實現快速可視化

    ? 加拿大渥太華大學與意大利羅馬第一大學的科學家展示了一種新技術,可實時可視化兩個糾纏光子(構成光的基本粒子)的波函數。這一成果有望加速量子技術的進步,改進量子態表征、量子通信并開發新的量子成像技術
    的頭像 發表于 12-01 10:34 ?336次閱讀