精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

生命科學(xué)領(lǐng)域下的“全球突破性十大技術(shù)”干貨與分享

GPU視覺識(shí)別 ? 來源:GPU視覺識(shí)別 ? 作者:GPU視覺識(shí)別 ? 2022-11-10 15:14 ? 次閱讀

細(xì)胞分析 | 分子圖譜 | IND

生物識(shí)別| 基因測序 |AlphaFold

在細(xì)胞分析、視覺識(shí)別、生物識(shí)別、基因測序、IND、AlphaFold快速發(fā)展的大背景下,各項(xiàng)造福于人類的新興技術(shù)開始展現(xiàn)。近日,《麻省理工科技評(píng)論》“十大突破性技術(shù)”20周年主題峰會(huì)在杭州余杭區(qū)未來科技城成功舉辦。

中國科學(xué)院院士、浙江大學(xué)發(fā)展委員會(huì)主席、浙江大學(xué)教授楊衛(wèi),中國工程院院士、清華大學(xué)環(huán)境學(xué)院教授賀克斌,中國工程院院士、清華大學(xué)智能產(chǎn)業(yè)研究院(AIR)院長張亞勤等近百位國內(nèi)外頂尖科學(xué)家、行業(yè)領(lǐng)袖、商界精英應(yīng)邀出席。

此次發(fā)布的突破性技術(shù)包括:新冠口服藥物、實(shí)用型聚變反應(yīng)堆、終結(jié)密碼、AI蛋白質(zhì)折疊、PoS權(quán)限證明、長期電網(wǎng)儲(chǔ)能電池、AI數(shù)據(jù)生成、瘧疾疫苗、除碳工廠和新冠肺炎變異追蹤。

pYYBAGNspLyAf7A4AAdAanSOzQQ961.png

新冠口服藥

自新冠疫情全球爆發(fā)以來,全球各大制藥企業(yè)和科研機(jī)構(gòu)一直在致力于開發(fā)可有效預(yù)防***感染的疫苗以及新冠的有效治療藥物。

據(jù)數(shù)據(jù)統(tǒng)計(jì),截至五月初全球在研新冠藥物共有1200余個(gè),IND及以上研發(fā)階段的項(xiàng)目占比近50%,提交上市申請(qǐng)15個(gè),涉及企業(yè)1000余家;目前全球已有50余款藥物(含疫苗)獲批新冠適應(yīng)癥,其中包括12款小分子化藥,30余款生物藥。

從作用機(jī)制上來看,已獲批小分子化藥中,RdRp抑制劑(RNA以來的RNA聚合酶抑制劑)共有3款,分別為吉利德的瑞德西韋、富山化學(xué)的法匹拉韋、默沙東的molnupiravir;此外,還包括輝瑞的3CL蛋白酶抑制劑Paxlovid 、COVID19復(fù)制酶多蛋白1a抑制劑組合藥物奈瑪特韋+利托那韋,Incyte的JAK抑制劑巴瑞替尼等。

生物藥大類中,作用機(jī)制為COVID19刺突糖蛋白調(diào)節(jié)劑的藥物數(shù)量占比最高(約為50%);從療法類型來看,除疫苗以外,中和抗體占多數(shù),包括sotrovimab、卡西瑞單抗+伊德單抗、巴尼韋單抗等,此外,tozinameran、elasomeran、ZyCoV-D等核酸類藥物也被批準(zhǔn)用于新冠治療。

目前,全球已上市的新冠口服小分子特***Paxlovid。國內(nèi)共上市10余款新冠藥物(含疫苗),包括口服藥物法匹拉韋、奈瑪特韋+利托那韋,中和抗體安巴韋單抗+羅米司韋單抗等,其中多數(shù)為緊急使用授權(quán)/附條件批準(zhǔn)。

相較于需要注射給藥的瑞德西韋和中和抗體藥物,口服小分子藥物具有更多優(yōu)勢,也因此成為了全球新冠藥物研發(fā)的熱門賽道。

新冠口服小分子特效藥的優(yōu)勢:

1、患者耐受性高,依從性好,便于在患者感染早期就抑制病毒的增殖,避免轉(zhuǎn)化為重癥

2、價(jià)格低廉,莫匹那韋在美國的定價(jià)為700美元/人,僅為中和抗體的三分之一

3、便于運(yùn)輸,易于分發(fā)。相較于需要靜脈注射的抗體藥物,口服小分子藥物無疑方便許多,在疫情嚴(yán)重、醫(yī)療條件落后的不發(fā)達(dá)國家,口服小分子抗病毒藥物更為實(shí)際

從國內(nèi)企業(yè)競爭情況來看,目前國內(nèi)共有100多家企業(yè)參與新冠藥物研發(fā),涉及研發(fā)項(xiàng)目150余個(gè)。國產(chǎn)在研的新冠口服藥有阿茲夫定、VV116、普克魯胺、SIM0417、RAY003等10余款,涉及的上市企業(yè)包括君實(shí)生物、開拓藥業(yè)、先聲藥業(yè)、眾生藥業(yè)等。

從藥品研發(fā)進(jìn)度看,有6款處于臨床試驗(yàn)階段,其中進(jìn)程最快的三款為真實(shí)生物的阿茲夫定、君實(shí)生物的VV116、開拓藥業(yè)的普克魯胺。首款國產(chǎn)新冠口服小分子特效藥基本鎖定在這三款藥物中。

一、研發(fā)“超速”的VV116

VV116是一款新型口服核苷類抗SARS-CoV-2藥物,為一款RdRp抑制劑,可抑制SARS-CoV-2復(fù)制。目前已在烏茲別克斯坦獲得緊急使用授權(quán),這是繼默沙東、輝瑞新冠口服藥獲批之后,全球又一個(gè)獲批上市的新冠口服藥。由中國科學(xué)院上海藥物研究所、中國科學(xué)院***、中國科學(xué)院***理化技術(shù)研究所、旺山旺水生物醫(yī)藥有限公司、中國科學(xué)院中亞藥物研發(fā)中心共同研發(fā)。

據(jù)君實(shí)生物發(fā)布消息稱,VV116在一項(xiàng)對(duì)比奈瑪特韋片/利托那韋片(即Paxlovid)用于輕中度新型***肺炎伴有進(jìn)展為重度包括死亡的高風(fēng)險(xiǎn)患者早期治療的III期注冊臨床研究(NCT05341609)達(dá)到方案預(yù)設(shè)的主要終點(diǎn)和次要有效性終點(diǎn)。并發(fā)布公告稱將于近期與藥物***溝通遞交新藥上市申請(qǐng)事宜。

其研究結(jié)果發(fā)布后,業(yè)內(nèi)關(guān)于VV116臨床試驗(yàn)的討論和質(zhì)疑也蜂擁而至。原因是其臨床試驗(yàn)的研發(fā)過程太快了,業(yè)內(nèi)認(rèn)為其研究直接轉(zhuǎn)到三期臨床嚴(yán)格意義上不合規(guī),且與從2020年就開始研究的普克魯胺相比,VV116研發(fā)的時(shí)間相對(duì)較短。除了研發(fā)進(jìn)程“超速”以外,VV116在安全性和專利方面等方面也引發(fā)了一些爭議。

雖然有所爭議,但君實(shí)生物表示研究已達(dá)到臨床方案預(yù)設(shè)的主要終點(diǎn),至少從持續(xù)臨床恢復(fù)的時(shí)間這點(diǎn)看,VV116的療效不亞于PAXLOVID。總的來說,其陸續(xù)公開的實(shí)驗(yàn)數(shù)據(jù)提振了市場對(duì)VV116后續(xù)開發(fā)的信心。

二、未批先火的阿茲夫定

阿茲夫定原本是治療艾滋病的藥物。2021年7月獲批上市用于與核苷逆轉(zhuǎn)錄酶抑制劑及非核苷逆轉(zhuǎn)錄酶抑制劑聯(lián)用,治療高病毒載量的成年HIV-1感染患者,成為我國首款真正擁有自主知識(shí)產(chǎn)權(quán)的抗艾滋病病毒藥物。

新冠疫情爆發(fā)后,真實(shí)生物開展了阿茲夫定治療新冠肺炎的研究。從作用靶點(diǎn)來看,阿茲夫定作用于RdRp(RNA聚合酶),與輝瑞的Paxlovid作用于3CLpro(3C-like protease)不同,但與默沙東的Molnupiravir相似。

4月中旬,真實(shí)生物方面發(fā)布了阿茲夫定用于抗***的部分?jǐn)?shù)據(jù)。從II期臨床和一部分III期臨床的結(jié)果看,阿茲夫定核酸轉(zhuǎn)陰時(shí)間為3-4天,平均用藥時(shí)間為6-7天,平均出院時(shí)間為9天。重癥與輕癥治療效果類似,對(duì)使用其它藥物無效的患者同樣有效,而且不像Paxlovid需要在感染新冠的早期服用。

5月12日,君實(shí)生物首次對(duì)外披露價(jià)格,據(jù)媒體報(bào)道VV116在烏茲別克斯坦的售價(jià)為185美元,約合人民幣1243元。而在抗***臨床試驗(yàn)結(jié)果尚未發(fā)布的情況下,真實(shí)生物已為阿茲夫定敲定了三個(gè)生產(chǎn)經(jīng)銷商(華潤雙鶴、新華制藥、奧翔藥業(yè)),因此也被業(yè)內(nèi)戲稱“一女三嫁”。

三、一波三折的普克魯胺

普克魯胺原本是開拓藥業(yè)用于治療前列腺癌的第二代AR拮抗劑,新冠疫情發(fā)生后,臨床試驗(yàn)證實(shí)該藥對(duì)新冠具有治療作用。2021年初,普克魯胺在巴西的三期臨床試驗(yàn)中,可將重癥新冠患者的死亡風(fēng)險(xiǎn)降低92%,一度被視為“人民的希望”。后來因該項(xiàng)III期臨床試驗(yàn)的中期分析未達(dá)到統(tǒng)計(jì)學(xué)顯著性,而引起不小爭議。

2022年4月,開拓藥業(yè)又公布臨床三期試驗(yàn)關(guān)鍵數(shù)據(jù),特別指出“普克魯胺有效降低新冠患者的住院/死亡率,特別是對(duì)于服藥超過7天的全部患者,以及伴有高風(fēng)險(xiǎn)因素的中高年齡新冠患者達(dá)到100%保護(hù)率,具有統(tǒng)計(jì)學(xué)顯著性”,從臨床失敗到100%有效,普克魯胺在群雄競賽中能否逆風(fēng)翻盤,值得期待。

除此之外,仍處于研發(fā)早期的在研國產(chǎn)新冠藥物還有:前沿生物-U(688221.SH)的FB2001、先聲藥業(yè)(02096.HK)的SIM0417、歌禮制藥-B(01672.HK)的ASC10和ASC11、廣生中霖/藥明康德(603259.SH)的3CL蛋白酶抑制劑、眾生睿創(chuàng)的RAY003等。

實(shí)用型聚變反應(yīng)堆

Commonwealth Fusion Systems 的研究人員對(duì)一塊10噸重的D型磁鐵緩慢充電并提升場強(qiáng),直到超過20特斯拉(T)。這是同類磁鐵的一個(gè)新記錄。該公司的創(chuàng)始人說,這一壯舉解決了開發(fā)一個(gè)緊湊、廉價(jià)的聚變反應(yīng)堆過程中所面臨的主要工程挑戰(zhàn)。

幾十年來,核聚變發(fā)電一直是物理學(xué)家的夢想。在遠(yuǎn)高于1億攝氏度的溫度下,就像在太陽中一樣,核子融合在一起,在此過程中釋放出大量的能量。如果研究人員能夠在地球上以可控和持續(xù)的方式實(shí)現(xiàn)這些反應(yīng),那么它就可以利用幾乎無限的燃料來源,提供廉價(jià)、持續(xù)、無碳的電力來源。

在其中一種方法中,磁鐵被用于將離子和電子的氣體,即所謂的等離子體,限制在甜甜圈形狀的反應(yīng)器內(nèi)。更強(qiáng)大的磁鐵意味著更少的熱量損失,從而使得更多的核聚變反應(yīng)可以在一個(gè)更小、更便宜的設(shè)施內(nèi)發(fā)生。這種改變不僅僅是一點(diǎn)點(diǎn):磁場強(qiáng)度增加一倍,產(chǎn)生相同能量所需的等離子體的體積就會(huì)減少16倍。

盡管過去數(shù)十年的研究已經(jīng)耗費(fèi)數(shù)十億美元的投資,但還沒有人建造出一個(gè)產(chǎn)生能量比反應(yīng)堆的消耗更多的核聚變工廠。但是,Commonwealth Fusion Systems 及其支持者充滿希望,其他聚變初創(chuàng)公司和研究工作也報(bào)告了最近的進(jìn)展。

Commonwealth Fusion Systems 正在建設(shè)一個(gè)工廠,以大規(guī)模生產(chǎn)磁鐵,并為原型反應(yīng)堆奠定基礎(chǔ)。如果一切如愿,這家初創(chuàng)公司計(jì)劃在21世紀(jì)30年代初期向電網(wǎng)提供聚變能源。

poYBAGNspL2AEcsRAACkZE4MXv4548.jpg

終結(jié)密碼

單一的長期使用的密碼會(huì)給自身的財(cái)產(chǎn)帶來危機(jī),這也是安全研究人員鼓勵(lì)大家經(jīng)常更換密碼,且盡量為不同設(shè)備設(shè)定不同密碼的原因。然而有人會(huì)說,密碼設(shè)多了容易忘記,那怎么辦呢?就是在這種情況下,生物識(shí)別技術(shù)應(yīng)運(yùn)而生。

雖然生物識(shí)別技術(shù)對(duì)提高安全性非常有用,但其變革性的好處不止于此。由于無需記憶繁瑣的密碼,生物識(shí)別技術(shù)可以顯著改善客戶體驗(yàn)。隨著企業(yè)開始認(rèn)識(shí)到基于知識(shí)的身份驗(yàn)證所帶來的安全風(fēng)險(xiǎn)和糟糕的用戶體驗(yàn),多模式生物識(shí)別和驗(yàn)證將會(huì)被應(yīng)用。

盡管如此,事情還是沒這么簡單的。早在2014年,德國黑客Jan "Starbug" Krissler就通過不同人的手的高分辨率照片演示了指紋是如何被偽造的,進(jìn)而強(qiáng)調(diào)了該技術(shù)存在的潛在漏洞。

無獨(dú)有偶,在蘋果iPhone 5s發(fā)布后的24小時(shí)之內(nèi),Stargbug立馬登上了熱搜,因?yàn)樗晒Α捌垓_”了蘋果的TouchID傳感器,解鎖了該款手機(jī)。據(jù)了解,是通過屏幕上存在的污點(diǎn),提取了指紋,進(jìn)而解鎖了手機(jī)。

不只是指紋識(shí)別,其實(shí)語音識(shí)別也存在一定的風(fēng)險(xiǎn)。比如,有不法分子或者黑客會(huì)有意識(shí)的記錄受害者的聲音,然后以此來躲開認(rèn)證的控制。或許,不久之后我們還會(huì)看到一個(gè)人的臉被“逆向工程”(reverse-engineered;一種算法,只需要一些2D的圖像即可完成),然后在3D打印機(jī)的幫助下,騙子們就可以帶著受害者的面具四處走動(dòng),甚至從ATM機(jī)中取走數(shù)千美元。

在作者看來,也不是所有的生物識(shí)別技術(shù)的缺陷都是由外部來源發(fā)現(xiàn)的,與其他技術(shù)相似,隨著技術(shù)的采用越來越多,越來越廣泛,本質(zhì)上的缺點(diǎn)就會(huì)變得清晰起來。舉個(gè)例子,盡管在匹配準(zhǔn)確性方面的會(huì)有所提高,但是誤報(bào)仍會(huì)困擾著其實(shí)現(xiàn),這是在開發(fā)、配置以及部署技術(shù)過程中很難去避免的。

但也正是在警界出現(xiàn)的這種誤判,敦促我們要停下來思考。也許,這項(xiàng)技術(shù)最大的缺陷在于生物識(shí)別的細(xì)節(jié)是靜態(tài)的。如果密碼被盜,還有修改的機(jī)會(huì),但是當(dāng)一個(gè)飽含信息的數(shù)據(jù)庫被破壞的時(shí)候,個(gè)人的指紋、虹膜或者其他面部特征是不能再被替換的。

因此,盡管生物識(shí)別技術(shù)是一項(xiàng)令人興奮的新技術(shù),但它的使用必須以一種冷靜的、有計(jì)劃和戰(zhàn)略性的方式實(shí)施。比如,驗(yàn)證身份時(shí),生物識(shí)別技術(shù)至少要使用其中兩項(xiàng);當(dāng)幫助3***追查犯罪嫌疑人時(shí),必須要經(jīng)過人類分析師來確認(rèn)結(jié)果,而且,更重要的是,所有的生物識(shí)別數(shù)據(jù)必須做好存儲(chǔ)。

pYYBAGNspL2ALhYjAAEIoJDTCc8162.jpg

AI蛋白質(zhì)折疊

日前,計(jì)算生物界的大明星AlphaFold,再度取得重大突破。它已經(jīng)能夠預(yù)測超過100萬個(gè)物種的2.14億個(gè)蛋白質(zhì)結(jié)構(gòu),幾乎涵蓋了地球上所有已知蛋白質(zhì)。AI的出現(xiàn)極大改變了蛋白質(zhì)預(yù)測的模式和效率。目前各高校、企業(yè)都有相關(guān)布局,而我國相關(guān)創(chuàng)業(yè)公司在2017年至2021年呈現(xiàn)出爆發(fā)式增長,且大多都已獲高融資。

在不久前,互聯(lián)網(wǎng)巨頭Meta,更新蛋白質(zhì)大模型ESMFold。它可直接從單序列語言模型表示中預(yù)測完整的蛋白質(zhì)結(jié)構(gòu),準(zhǔn)確性與AlphaFold相媲美,推理速度快了一個(gè)數(shù)量級(jí)。彭健帶隊(duì)的國內(nèi)AI創(chuàng)新藥公司華深智藥,也實(shí)現(xiàn)了最新突破:OmegaFold用單條序列搞定蛋白質(zhì)3D結(jié)構(gòu),即便是人工設(shè)計(jì)蛋白質(zhì),也可以通過AI預(yù)測3D結(jié)構(gòu)確定其功能。

poYBAGNspL2AId10AADFAZ82GTE109.jpg

一、國內(nèi)計(jì)算生物學(xué)2017年-2021年呈現(xiàn)出爆發(fā)式增長

計(jì)算生物,本質(zhì)來講就是通過計(jì)算手段來解決生物學(xué)問題。具體來說,就是根據(jù)不同類型的生物數(shù)據(jù)(比如濃度、序列、圖像等)來構(gòu)建算法和模型,從而理解生物系統(tǒng)本身(比如分子、細(xì)胞、組織和器官等),并推進(jìn)相關(guān)研究及應(yīng)用的學(xué)科。

而從應(yīng)用劃分,目前主要落地領(lǐng)域包括序列分析、結(jié)構(gòu)和功能分析、生物分子動(dòng)力學(xué)、系統(tǒng)建模、進(jìn)化和群體基因組學(xué)、相關(guān)性網(wǎng)絡(luò)……

以AlphaFold2為例,它是基于基因序列預(yù)測蛋白質(zhì)結(jié)構(gòu),屬于結(jié)構(gòu)和功能分析范疇。

可以看到的是,計(jì)算生物學(xué)屬于工具性質(zhì)的學(xué)科。某種程度上這決定了市面上尚不存在嚴(yán)格意義上的計(jì)算生物學(xué)公司,而是以AI制藥、組學(xué)、精準(zhǔn)醫(yī)療等名義出現(xiàn)。這一點(diǎn)在我國尤為明顯。

目前,國內(nèi)以AI制藥為核心場景。不光高校機(jī)構(gòu)(西湖大學(xué)生命科學(xué)研究院、北大前沿交叉學(xué)科研究院等)、互聯(lián)網(wǎng)大廠(阿里、百度、華為等)有相關(guān)研究和布局。相關(guān)創(chuàng)業(yè)公司在2017年-2021年呈現(xiàn)出爆發(fā)式增長,且都已獲高融資。這種情況同樣也體現(xiàn)在國外。

據(jù)浦發(fā)硅谷銀行《醫(yī)療健康行業(yè)投資與退出趨勢》報(bào)告顯示,2021年投向計(jì)算生物學(xué)公司的金額達(dá)到59億美元(即397億元)一年增長高達(dá)3倍,超過非計(jì)算生物學(xué)公司投資的兩倍。

從商業(yè)模式上看,整個(gè)行業(yè)以2B為主導(dǎo),主要為算法授權(quán)、生物資產(chǎn)和軟件使用。我國主要為前兩種,但鑒于軟件平臺(tái)和先鋒項(xiàng)目能夠形成技術(shù)及業(yè)務(wù)迭代閉環(huán)。

在出現(xiàn)大量優(yōu)勢自研算法后,軟件平臺(tái)所占比重將有明顯上升。國外已開始通過打包訂閱、按照使用量計(jì)費(fèi)等方式對(duì)外商用其計(jì)算生物學(xué)服務(wù)。

二、AI或者深度學(xué)習(xí)的出現(xiàn)給計(jì)算生物帶來了轉(zhuǎn)機(jī)

如今這一賽道爆火的原因:首先和深度學(xué)習(xí)近年來的爆發(fā)式增長有關(guān);其次是最近興起的AI for Science概念,讓AI在生物學(xué)領(lǐng)域落地的象征——計(jì)算生物學(xué)成為一種趨勢。AI和傳統(tǒng)科研結(jié)合帶來的巨大潛能,有望帶來一場全新的科學(xué)革命;最后是對(duì)于生物學(xué)本身,傳統(tǒng)的實(shí)驗(yàn)和分析手段已難以充分開發(fā)海量生物數(shù)據(jù),確實(shí)需要計(jì)算生物學(xué)這種跨學(xué)科,同時(shí)兼顧多個(gè)細(xì)分領(lǐng)域的綜合性工具來解決問題。

那么,計(jì)算生物學(xué)具體能給生物學(xué)帶來什么價(jià)值呢?《計(jì)算生物學(xué)深度產(chǎn)業(yè)報(bào)告》認(rèn)為,分成科研和應(yīng)用兩大塊。

在科研方面計(jì)算生物學(xué)最直接的作用,就是對(duì)實(shí)驗(yàn)的替代,甚至超越。與操作水平、 實(shí)驗(yàn)器具、觀察水平等精度有限的傳統(tǒng)生物實(shí)驗(yàn)相比,基于計(jì)算機(jī)的計(jì)算生物學(xué)不僅成本更低、速度更快,在理論上也擁有無限的計(jì)算精度和高度可復(fù)制性。在將過往經(jīng)驗(yàn)內(nèi)化在AI模型中后,計(jì)算生物學(xué)能夠自動(dòng)化、規(guī)模化和并行化地提出假設(shè),讓科研人員無需依賴少數(shù)天才,同時(shí)降低下游進(jìn)行開發(fā)的門檻,而這將有望對(duì)行業(yè)格局帶來重大影響。其次是開辟“先假設(shè)-再驗(yàn)證-最后優(yōu)化假設(shè)”的新方式,讓研發(fā)效率得到數(shù)倍提升。

早在1991年,Nature上有觀點(diǎn)就提出,新的生物學(xué)研究方式的出發(fā)點(diǎn)應(yīng)該是科學(xué)家先從理論推測出發(fā),再返回到實(shí)驗(yàn)里去,追蹤或驗(yàn)證理論假設(shè)。計(jì)算生物學(xué)恰好能夠基于干濕循環(huán)實(shí)驗(yàn),開辟“假設(shè)-驗(yàn)證-優(yōu)化假設(shè)”的新方式,提升整體生物研發(fā)效率。

具體來說,一方面,***通過高通量的濕實(shí)驗(yàn),在快速驗(yàn)證AI預(yù)測的同時(shí),為AI模型提供大量可用的訓(xùn)練數(shù)據(jù),提升AI預(yù)測模型的精度。另一方面,AI將基于自身的數(shù)據(jù)處理能力,提供能夠在濕實(shí)驗(yàn)中驗(yàn)證的假設(shè)(高參考價(jià)值、甚至可實(shí)用),兩者共同迭代加速。

三、精準(zhǔn)醫(yī)療將成為計(jì)算生物學(xué)長期的重點(diǎn)發(fā)力方向

在AI制藥領(lǐng)域,智能***已成為公司長久競爭力的重要體現(xiàn)。在應(yīng)用方面的價(jià)值,可以按流程劃分為三大類:

1、計(jì)算推演生物性質(zhì)及原理

蛋白質(zhì)結(jié)構(gòu)預(yù)測、致病機(jī)理研究、蛋白質(zhì)相互作用預(yù)測(PPI)、抗體和抗原的表位預(yù)測、基于基因組學(xué)尋找疾病成因或?qū)ふ倚滦偷纳飿?biāo)志物等。

2、搭建預(yù)測及判斷模型

AI制藥中基于靶點(diǎn)的化合物性質(zhì)預(yù)測(主要涉及小分子藥物開發(fā)),疾病診斷/***/治療建模,涵蓋細(xì)胞/器官/人體的生物模擬器等。

3、對(duì)生物體進(jìn)行控制改造

新療法/藥物開發(fā)、精準(zhǔn)醫(yī)療和生物制造(以合成生物學(xué)為代表)。其中新療法/藥物開發(fā)是目前落地最成熟的場景。精準(zhǔn)醫(yī)療將成為計(jì)算生物學(xué)長期的重點(diǎn)發(fā)力方向,這是由于C端市場的消費(fèi)意愿更為明顯,且使用人體廣泛、產(chǎn)品形態(tài)相對(duì)直接。

在這個(gè)方向上,國外已出現(xiàn)了基于多組學(xué)的多家布局,而國內(nèi)布相關(guān)公司相對(duì)較少,且均基于基因組學(xué)進(jìn)行,存在一定差距。

四、如今計(jì)算生物學(xué)瓶頸

可以預(yù)見的是,計(jì)算生物學(xué)未來的產(chǎn)業(yè)鏈將會(huì)是以數(shù)據(jù)提供商為底層支撐+上層各類相關(guān)從業(yè)公司(包括提供計(jì)算平臺(tái)和軟件、分子建模/機(jī)器學(xué)習(xí)框架、算力以及智能***的企業(yè))的結(jié)構(gòu)構(gòu)成。

《計(jì)算生物學(xué)深度產(chǎn)業(yè)報(bào)告》認(rèn)為,眼下,要想實(shí)現(xiàn)以上期待,年輕的計(jì)算生物學(xué)還有著以下幾大關(guān)鍵瓶頸待突破——有的問題為該行業(yè)獨(dú)有,也有的是整個(gè)AI科學(xué)領(lǐng)域都存在的:

1)對(duì)生物底層原理的明確

目前,我們還有大量關(guān)于生物學(xué)本身的底層機(jī)制待研究透徹,在進(jìn)行模型構(gòu)建、生物驗(yàn)證及人體落地時(shí),需要引入這次知識(shí)來減少不符合領(lǐng)域認(rèn)知的偏差,保證準(zhǔn)確率。

2)統(tǒng)一的計(jì)算和數(shù)據(jù)框架

基于微觀手段,一些生物學(xué)上的特定問題能夠得到解決,但要最終落地,所需的模型需要能夠覆蓋多組學(xué)數(shù)據(jù)、多環(huán)節(jié)及功能并行。此外,需要保證計(jì)算生物學(xué)中的多種異構(gòu)數(shù)據(jù),例如圖像、視頻、分子圖譜、DNA 代碼、基因表達(dá)、電信號(hào)等,有明確的標(biāo)準(zhǔn)和通用格式,以便在不同算法和平臺(tái)之間互操作。

3)消費(fèi)級(jí)數(shù)據(jù)的獲取

在分析師看來,基因組學(xué)相關(guān)的計(jì)算生物學(xué),其關(guān)鍵的產(chǎn)業(yè)發(fā)展階段是數(shù)據(jù)采集達(dá)到了消費(fèi)級(jí)水準(zhǔn)。

4)工程落地能力

目前學(xué)術(shù)上有很多機(jī)器學(xué)習(xí)算法和模型已經(jīng)相當(dāng)成熟,關(guān)鍵是如何在具備底層數(shù)據(jù)的情況下,加入對(duì)生物學(xué)的具體理解,進(jìn)行精細(xì)地調(diào)整。最后就是數(shù)據(jù)隱私的問題,以及如何讓相關(guān)模型具備可解釋性,取得這一特殊行業(yè)的信任問題。

PoS權(quán)益證明

比特幣這樣的加密貨幣需要使用大量的電力。2021年,比特幣網(wǎng)絡(luò)消耗了超過100太瓦時(shí),比芬蘭的年度能耗還要多。

權(quán)益證明提供了一種建立不需要耗能太多的網(wǎng)絡(luò)的方法。如果一切按計(jì)劃進(jìn)行,世界第二大加密貨幣、運(yùn)行各種應(yīng)用程序的以太坊將在2022年上半年過渡到這種模式。預(yù)計(jì)這一轉(zhuǎn)變將減少99.95%的能源使用。

加密貨幣在區(qū)塊鏈上運(yùn)行,通過交易產(chǎn)生的數(shù)字賬本,其安全性必須得到保證,防止作弊者、欺詐者和黑客入侵。比特幣和以太坊目前使用工作量證明算法來確保安全:“礦工”解決加密難題,從而競爭驗(yàn)證新交易區(qū)塊的權(quán)利。成功的“礦工”會(huì)獲得加密貨幣作為他們工作的獎(jiǎng)勵(lì)。工作量證明意味著尋找數(shù)學(xué)難題的解決方案,這需要大量的計(jì)算能力,因此也需要電力。

有了權(quán)益證明,驗(yàn)證者不必相互爭奪并在能源和計(jì)算硬件上投入巨大。相反,他們的加密貨幣緩存或權(quán)益,允許進(jìn)入一個(gè)抽獎(jiǎng)活動(dòng)。那些被選中的人獲得了驗(yàn)證一組交易的權(quán)力(并因此獲得更多的加密貨幣)。在一些網(wǎng)絡(luò)中,表現(xiàn)出不良行為的驗(yàn)證者會(huì)受到懲罰,從而失去一部分權(quán)益。

長時(shí)電網(wǎng)儲(chǔ)能電池

2021年4月,一個(gè)陽光明媚的下午,可再生能源打破了加州主要電網(wǎng)的記錄,提供了足夠的電力來滿足94.5%的需求。這一時(shí)刻被譽(yù)為低碳化道路上的一個(gè)里程碑。但是,當(dāng)太陽落山,微風(fēng)停止,會(huì)發(fā)生什么?

處理可再生能源帶來的波動(dòng)式電力生產(chǎn)需要廉價(jià)的存儲(chǔ),時(shí)間為數(shù)小時(shí)甚至數(shù)天,新型的鐵基電池可能能夠勝任這一任務(wù)。

總部位于俄勒岡州的ESS公司,其電池可以儲(chǔ)存4至12小時(shí)的能量,它在2021年推出了其第一個(gè)電網(wǎng)規(guī)模的項(xiàng)目。總部位于馬薩諸塞州的 Form Energy 公司在2021年籌集了2.4億美元,其電池可儲(chǔ)存電能長達(dá)100小時(shí),它的第一次安裝將是在明尼蘇達(dá)州的一個(gè)一兆瓦的試驗(yàn)工廠,預(yù)計(jì)將在2023年完成。

這兩家公司都選擇使用鐵基電池,而鐵是地球上最豐富的材料之一。這意味著他們的產(chǎn)品最終可能比其他電網(wǎng)存儲(chǔ)候選者,如鋰離子電池和釩系液流電池更便宜。

Form Energy 公司表示,其電池最終的成本可能僅為每千瓦時(shí) 20 美元,甚至低于未來幾十年對(duì)鋰離子電池的樂觀預(yù)測。

但是,仍有一些挑戰(zhàn)需要解決。鐵基電池的效率通常很低,這意味著投入其中的相當(dāng)一部分能量無法被回收。另外,副反應(yīng)也會(huì)隨著時(shí)間的推移而使電池退化。但是,如果鐵基電池能夠以足夠低的成本被廣泛部署,它們可以幫助更多人使用可再生能源供電

AI數(shù)據(jù)生成

在疫情成為新常態(tài)的大背景下,如何投資技術(shù),成為企業(yè)管理者關(guān)切的問題。時(shí)值年末,市場調(diào)研機(jī)構(gòu)Gartner即會(huì)就來年的“重要戰(zhàn)略科技趨勢”發(fā)表預(yù)測,為其最重要的年度報(bào)告之一,告知企業(yè)管理層、IT從業(yè)者和政府人員應(yīng)對(duì)未來的投資動(dòng)態(tài)和技術(shù)風(fēng)險(xiǎn),同時(shí)指導(dǎo)技術(shù)和投資方向。

人工智能(AI)在Gartner給出的技術(shù)趨勢預(yù)測中頗具分量,涉及到AI工程化(AI Engineering)、超級(jí)自動(dòng)化(Hyperautomation)、生成式AI(Generative Artificial Intelligence)、自治系統(tǒng)(Autonomic Systems)等。

其中,生成式人工智能技術(shù)位列Gartner技術(shù)趨勢預(yù)測的首位,是最引人注目和的人工智能技術(shù)之一。Gartner預(yù)計(jì)到2025年,生成式人工智能將占所有生成數(shù)據(jù)的10%,而目前這一比例還不到1%。

所謂生成式AI,Gartner解釋稱,通過各種機(jī)器學(xué)習(xí)(ML)方法從數(shù)據(jù)中學(xué)習(xí)要素,進(jìn)而生成全新的、完全原創(chuàng)的、真實(shí)的工件(一個(gè)產(chǎn)品或物品或任務(wù)),這些工件與訓(xùn)練數(shù)據(jù)保持相似,而不是復(fù)制。

生成式AI的好處是什么?市場調(diào)研機(jī)構(gòu)Gartner高級(jí)研究總監(jiān)高挺解釋,生成式AI不僅僅可以判斷、還可以創(chuàng)造,實(shí)際上AI當(dāng)前最大的用途就是判斷,意味著AI的用途將有結(jié)構(gòu)性變化。

“以前我們是讓AI不停的去做判斷、去做分類。比如說:AlphaGo,你告訴我下一步棋該怎么走?叫它做判斷。或者把一張照片給一個(gè)AI的模型說:你幫我分辨一下這是不是張三,或者是這張照片是不是一張貓的照片。”高挺告訴界面記者,“是我們會(huì)發(fā)現(xiàn),在未來的這段時(shí)間里面,它很多時(shí)候是需要AI不再去進(jìn)行判斷,而是說,“來幫我生成一段代碼,這個(gè)代碼所做的事情是從‘1’加到‘100’,那么AI也能自動(dòng)生成這個(gè)代碼了。”

高挺還舉例稱,可以利用已有的數(shù)據(jù)做出一個(gè)模型之后可以生成更多的“合成數(shù)據(jù)”,這些合成數(shù)據(jù)就像人臉一樣,從肉眼角度看不出這張人臉有任何問題,但是其實(shí)這個(gè)人是目前世界上60億人口里面不存在的一個(gè)、看上去跟真人一模一樣的人。

Gartner稱,生成式AI從數(shù)據(jù)中學(xué)習(xí)內(nèi)容或?qū)ο螅⑦\(yùn)用數(shù)據(jù)生成全新、完全原創(chuàng)的新內(nèi)容,可以下一代的自動(dòng)編程、藥物開發(fā)、視覺藝術(shù)、社交、商業(yè)服務(wù)、工程設(shè)計(jì)與流程。同時(shí),它可以被用來檢測欺詐、虛假信息和身份盜竊。但此外,盡管谷歌、Meta、微軟等科技公司投入最多資源在生成式 AI,但也必須防范諸如深度偽造(Deepfake)的濫用。

生成式AI外,Gartner還指出,在明年,AI工程化這一趨勢也將得到產(chǎn)業(yè)關(guān)注。人工智能的工程化即是將數(shù)據(jù)搜集、數(shù)據(jù)處理、建模、分析,到報(bào)表產(chǎn)生全部以SOP(標(biāo)準(zhǔn)作業(yè)程序)方式處理,看似簡單的工作卻對(duì)數(shù)據(jù)科學(xué)家?guī)順O大幫助。

“AI工程化其實(shí)并不只是一個(gè)技術(shù)問題,它很多時(shí)候是一個(gè)流程性的問題。”高挺稱,根據(jù)統(tǒng)計(jì),數(shù)據(jù)科學(xué)家在處理數(shù)據(jù)工程時(shí)最費(fèi)時(shí)的工作是數(shù)據(jù)處理,占比75%,只剩下25%時(shí)間可以定義與解決問題,大幅降低企業(yè)解決陌生問題的能力。最新的AI工程可以融入產(chǎn)業(yè)專業(yè)知識(shí)(Domain Know-How)。Gartner認(rèn)為,直到2025年,約有10%運(yùn)用AI工程的企業(yè)能在業(yè)務(wù)上取得3倍以上回報(bào)率。

“在2020年、2021年,經(jīng)濟(jì)都受到了不同程度的影響。在如今疫情變成新常態(tài)的狀況下,很多CEO都希望在2022年他們企業(yè)的業(yè)績會(huì)有一些反彈,或者說是能夠所謂‘贏回’他們損失的收入。”高挺引用Gartner的一份CEO調(diào)查報(bào)告稱,"增長"、“數(shù)字化”和“效率”將是來年企業(yè)管理者的三個(gè)關(guān)鍵詞,因此,新一年的技術(shù)趨勢均與此有關(guān),AI技術(shù)外,新的技術(shù)趨勢還包括隱私增強(qiáng)計(jì)算、云原生平臺(tái)等。

“如果說去年的技術(shù)主線是‘新冠疫情的影響下世界發(fā)生了怎么樣的變化’,今年的則是新冠疫情差不多已經(jīng)過去了或者說已經(jīng)成為一種新常態(tài)了,如何應(yīng)對(duì)這種新常態(tài),不管是中國還是西方,區(qū)別只是大家處理的方式不一樣。”高挺表示,在新常態(tài)下,居家辦公成為主流,在此情況下,企業(yè)需使用技術(shù)手段追回疫情下?lián)p失,以及如何在新常態(tài)下創(chuàng)造出新模式,保證企業(yè)長久生存,成為來年技術(shù)敘事的主要邏輯。

瘧疾疫苗

RTS,S是首款獲得世界衛(wèi)生組織批準(zhǔn)的瘧疾疫苗,自2021年10月起在非洲瘧疾傳播的中、高風(fēng)險(xiǎn)地區(qū)5月齡以上兒童中使用。

瘧疾是嚴(yán)重危害人類健康的全球三大傳染病之一。隨著青蒿素等各類抗瘧藥的臨床耐藥性問題日益增長,目前全世界仍有近一半人口面臨瘧疾感染風(fēng)險(xiǎn),致死性最強(qiáng)的惡性瘧疾原蟲每年造成兩三億的感染病例。21世紀(jì)以來,全球每年約有10個(gè)瘧疾疫苗項(xiàng)目獲批開展臨床試驗(yàn),約150項(xiàng)已完成或提前終止臨床試驗(yàn)。

迄今為止,瘧疾疫苗RTS,S是唯一被證明可降低瘧疾患兒臨床發(fā)病率和死亡率的疫苗。瘧疾疫苗RTS,S僅在接種4劑后的一年內(nèi)對(duì)5—17月齡兒童具有較高的保護(hù)率,隨后免疫保護(hù)率快速下降,接種一年半后平均保護(hù)率已低于30%。作為瘧疾疫苗研究領(lǐng)域零的突破,瘧疾疫苗RTS,S具有重大的現(xiàn)實(shí)意義,世界衛(wèi)生組織預(yù)期在未來每年可以挽救數(shù)萬名5歲以下非洲兒童的生命。

瘧疾疫苗RTS,S并沒有達(dá)到世界衛(wèi)生組織官方標(biāo)準(zhǔn),即保護(hù)率大于50%,保護(hù)時(shí)間大于一年,因此如何有效遏制瘧疾在熱帶、亞熱帶等國家和地區(qū)的流行與傳播,依然是全球瘧疾研究人員亟需解決的科學(xué)問題。

由于瘧原蟲生活史包括肝(細(xì)胞)內(nèi)期、紅(細(xì)胞)內(nèi)期和蚊期等復(fù)雜的生長時(shí)期,惡性瘧原蟲具有高度變異的抗原蛋白和多變的免疫逃逸策略,這既限制了國內(nèi)外瘧疾疫苗的研發(fā),同時(shí)也導(dǎo)致瘧疾疫苗RTS,S并不完美的主要原因。

近年來,隨著多種新型基因編輯技術(shù)在惡性瘧原蟲關(guān)鍵生物標(biāo)志物功能鑒定中的廣泛應(yīng)用,研究人員針對(duì)惡性瘧原蟲不同生長時(shí)期設(shè)計(jì)多價(jià)疫苗成為可能。同時(shí)與傳統(tǒng)疫苗相比,新興的信使核糖核酸疫苗技術(shù)、疫苗佐劑和抗原遞送系統(tǒng)的技術(shù)革新,也將為瘧疾疫苗研究提供更多的潛在方案,使新一代高效瘧疾疫苗研發(fā)有望在未來5—10年內(nèi)取得關(guān)鍵性突破。

除碳工廠

工業(yè)革命以來,人類活動(dòng)大量排放二氧化碳(CO?)等溫室氣體,溫室效應(yīng)持續(xù)加強(qiáng),導(dǎo)致全球平均氣溫不斷升高。

實(shí)際上,即使全世界達(dá)到了碳中和,由于工業(yè)革命以來人類已經(jīng)排放了超過萬億噸的CO?,如果僅僅依靠自然過程,大氣中CO?濃度降低至工業(yè)革命前的水平也將是一個(gè)非常緩慢的過程。

作為一項(xiàng)利用工程系統(tǒng)從大氣中去除CO?的技術(shù),直接空氣碳捕獲(Direct Air Capture,DAC)技術(shù)的大規(guī)模應(yīng)用對(duì)于有效降低大氣中CO?濃度,遏制氣候變化具有重要意義。該技術(shù)主要利用引風(fēng)機(jī)將空氣抽入,通過吸附、吸收或膜分離裝置捕集CO?,并將CO?排回大氣,而捕獲的CO?可以進(jìn)行封存或利用,整個(gè)過程可以理解為一種工業(yè)“光合作用”。

不同于針對(duì)工業(yè)固定源的CO?捕獲技術(shù),DAC技術(shù)可以部署在世界上任何有電力供應(yīng)的地方,選址更靈活,且可以模塊化建設(shè)。

DAC技術(shù)在除碳方面具有明顯的技術(shù)優(yōu)勢,但目前高昂的運(yùn)行成本仍是限制其大規(guī)模應(yīng)用的關(guān)鍵因素。近期,美國加州大學(xué)伯克利分校的研究人員對(duì)其發(fā)展前景進(jìn)行了展望,并提出了適于該技術(shù)發(fā)展的政策路線圖。他們認(rèn)為DAC技術(shù)的全球推廣不能依賴市場杠桿效應(yīng),而應(yīng)通過持續(xù)的“財(cái)政激勵(lì)+強(qiáng)制部署”政策推進(jìn)其大規(guī)模部署。從技術(shù)角度來看,DAC技術(shù)發(fā)展的關(guān)鍵在于高效低成本的碳捕集材料與工藝系統(tǒng)的研發(fā),其商業(yè)化應(yīng)用仍然需要依靠技術(shù)進(jìn)步來大幅降低運(yùn)行成本。

近年來,歐美發(fā)達(dá)國家已陸續(xù)開展DAC技術(shù)的研發(fā)與應(yīng)用,通過材料與技術(shù)的進(jìn)步不斷降低運(yùn)行成本。2021年8月,美國能源部宣布撥款2400萬美元支持DAC技術(shù),一些比二氧化碳捕獲工廠Orca更大型的“除碳工廠”也正在建設(shè)中。這些先行工作可能使發(fā)達(dá)國家更早掌握前沿技術(shù)和核心知識(shí)產(chǎn)權(quán),并為未來獲取經(jīng)濟(jì)效益搶得先機(jī)。

新冠變異追蹤

新冠肺炎病毒仍在全球蔓延,在所有對(duì) COVID-19呈陽性反應(yīng)的鼻拭子中,約有兩百個(gè)被送到基因測序機(jī)中進(jìn)行額外分析。這樣做的目的是為SARS-CoV-2病毒的基因組創(chuàng)建一個(gè)新的地圖,并看看有什么變化。這個(gè)地圖共有30000個(gè)左右的字母組成。

這樣的基因監(jiān)測使科學(xué)家能夠迅速發(fā)現(xiàn)并警告新的變體,如阿爾法(a)、德爾塔(δ)

和最近的奧密克戎(Omicron)。這是一項(xiàng)史無前例的工作,它使SARS-CoV-2成為歷史上被測序最多的生物體,超越了流感、HIV,甚至我們自己的人類基因組。像GISAID和 Nextstrain這樣的開放數(shù)據(jù)庫已經(jīng)顯示了超過700萬個(gè)病菌的基因圖譜。

Omicron是迄今為止變異程度最高的變種。2021年11月,南非的一個(gè)***在其測序儀發(fā)現(xiàn)了一個(gè)有50多個(gè)變異的病毒基因組,并首次發(fā)出警告信號(hào)。幾乎在瞬間,西雅圖、波士頓和倫敦的計(jì)算機(jī)都在使用這些數(shù)據(jù)進(jìn)行預(yù)測:Omicron是個(gè)麻煩,它是一個(gè)可能逃避抗體的變種。

測序儀還不能告訴我們的一件事是,SARS-CoV-2接下來究竟會(huì)如何演變。這就是為什么有人說我們應(yīng)該更密切地追蹤這個(gè)病毒。大部分的序列是在英國、美國和丹麥等地產(chǎn)生的,但是在沒有測序能力的地區(qū),病毒仍然可以在不知不覺中演變。幸運(yùn)的是,南非在發(fā)現(xiàn)Omicron和追蹤其傳播方面的快速工作為全世界提供了早期預(yù)警。

藍(lán)海大腦生命科學(xué)解決方案

一、案例概述

某藥學(xué)院初始于2021年,藥物分子研發(fā)是一個(gè)非常復(fù)雜且非常耗時(shí)的過程,藥物分子篩選只是前期流程中的一個(gè)環(huán)節(jié)。如尋找跟蛋白病毒酶結(jié)合的小分子,由于存在不同種類或研究機(jī)構(gòu)的配體(小分子)庫,配體(小分子)庫數(shù)量巨大,每個(gè)配體庫的配體數(shù)量成千上萬(甚至更大),通過實(shí)驗(yàn)方式測試驗(yàn)證是不切實(shí)際的。通過計(jì)算機(jī)數(shù)值模擬進(jìn)行篩選,對(duì)不同配體的結(jié)合效果進(jìn)行打分,篩選出分?jǐn)?shù)高且結(jié)合模式合理的一些配體作為候選藥物進(jìn)行實(shí)驗(yàn)驗(yàn)證,能夠有效的加速藥物研發(fā)進(jìn)程。


由于配體庫數(shù)量巨大,在有限時(shí)間內(nèi)完成篩選,同樣挑戰(zhàn)巨大。例如,配體庫有10000個(gè)候選配體,每個(gè)配體平均處理時(shí)間為1.5小時(shí),總共需要15000 個(gè)小時(shí)(625天)。因此,為在規(guī)定時(shí)間內(nèi)算完,需要具備以下條件:
1)擁有強(qiáng)大算力的計(jì)算平臺(tái)

2)大容量存儲(chǔ),用于存放處理數(shù)據(jù)和計(jì)算結(jié)果

此外,為了保證篩選計(jì)算能夠高效、順利完成,還需要計(jì)算服務(wù),包括:

1)集群軟件運(yùn)行環(huán)境,保證在多機(jī)環(huán)境軟件下運(yùn)行,以及數(shù)據(jù)訪問

2)能夠支持多任務(wù)在多機(jī)環(huán)境下并發(fā)處理的并行方案

除計(jì)算平臺(tái)外,藥物篩選還需要高性能應(yīng)用軟件。藥物篩選模擬計(jì)算包括Docking和分子動(dòng)力學(xué)計(jì)算:其中Docking 耗時(shí)相對(duì)較小,常用于大量配體的初步篩選,主要軟件有dock6、Autodock Vina、Glide等。分子動(dòng)力學(xué)模擬計(jì)算比較耗時(shí),測試作用的時(shí)間變化,用于對(duì)Docking初選結(jié)果進(jìn)一步分析,主要軟件有Gromacs,Namd,Amber等,使用GPU加速效果一般比較明顯。

pYYBAGNspMGAF-JqAAZltQ8jCCY971.png

二、方案與價(jià)值

藥物小分子研發(fā)需要強(qiáng)大算力的高性能集群,獲取這些計(jì)算資源和服務(wù)成為當(dāng)下的重中之重。清華大學(xué)藥學(xué)院搭建了四臺(tái)A100液冷服務(wù)器、9臺(tái)CPU服務(wù)器、兩臺(tái)高通量液冷服務(wù)器,為高性能計(jì)算環(huán)境提供基礎(chǔ)的計(jì)算平臺(tái)。

使用DOCK6 處理配體(小分子)庫的對(duì)接案例時(shí),在一個(gè)文件夾中,如mol2,存放大量的小分子文件,每個(gè)小分子處理流程是一樣的,均需要與相同的受體(如病毒蛋白酶)進(jìn)行計(jì)算。這時(shí)需要在短時(shí)間內(nèi)提供大量GPU和超算產(chǎn)品,以及全天候的技術(shù)支持。搭建開放共享平臺(tái),使用高性能計(jì)算集群,用于藥物研發(fā)的分子對(duì)接、分子動(dòng)力學(xué)模擬、深度學(xué)習(xí)模型訓(xùn)練,把需要幾天的計(jì)算工作縮短到幾小時(shí),速度提升8到20倍。同時(shí)為各研發(fā)老師創(chuàng)建不同的子賬戶,實(shí)現(xiàn)計(jì)算資源共享和數(shù)據(jù)共享。為高性能計(jì)算環(huán)境提供基礎(chǔ)的計(jì)算平臺(tái),要實(shí)現(xiàn)高效的藥物篩選,還需要高通量任務(wù)解決方案。

三、總結(jié)

該藥學(xué)院藥物研發(fā)需要強(qiáng)大算力的高性能計(jì)算集群,如藥物篩選需要進(jìn)行大量小分子的Docking處理。藥學(xué)院老師可以利用藍(lán)海大腦高性能液冷服務(wù)器,快速構(gòu)建高性能集群,獲取高性能的計(jì)算實(shí)例,滿足算力的需求。同時(shí)提供高通量任務(wù)處理的解決方案,使得藥物篩選在多計(jì)算節(jié)點(diǎn)、多核上并發(fā)處理,降低任務(wù)整體執(zhí)行時(shí)間。

審核編輯 黃昊宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 生物識(shí)別
    +關(guān)注

    關(guān)注

    3

    文章

    1210

    瀏覽量

    52510
  • AI
    AI
    +關(guān)注

    關(guān)注

    87

    文章

    30146

    瀏覽量

    268421
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    施耐德電氣助力生命科學(xué)行業(yè)高質(zhì)量發(fā)展

    隨著全球市場迎來新的發(fā)展趨勢,生命科學(xué)行業(yè)在蓬勃發(fā)展的同時(shí),也面臨著研發(fā)生產(chǎn)成本高、供應(yīng)鏈復(fù)雜、政策法規(guī)日趨嚴(yán)苛等挑戰(zhàn)與諸多不確定性。
    的頭像 發(fā)表于 10-31 15:43 ?211次閱讀

    “智能網(wǎng)聯(lián)汽車全球十大發(fā)展突破”在京發(fā)布

    “智能網(wǎng)聯(lián)汽車全球十大發(fā)展突破”是從過去5-10年的代表成果中,評(píng)選出在政策法規(guī)、市場應(yīng)用、技術(shù)創(chuàng)新等方面最具標(biāo)志
    的頭像 發(fā)表于 10-19 08:08 ?313次閱讀
    “智能網(wǎng)聯(lián)汽車<b class='flag-5'>全球</b><b class='flag-5'>十大</b>發(fā)展<b class='flag-5'>突破</b>”在京發(fā)布

    AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第4章-AI與生命科學(xué)讀后感

    。 4. 對(duì)未來生命科學(xué)發(fā)展的展望 在閱讀這一章后,我對(duì)未來生命科學(xué)的發(fā)展充滿了期待。我相信,在人工智能技術(shù)的推動(dòng)生命科學(xué)將取得更加顯著
    發(fā)表于 10-14 09:21

    激光引擎改善生命科學(xué)應(yīng)用

    傳輸系統(tǒng)相結(jié)合,簡化了熒光顯微鏡專家和流式細(xì)胞儀 OEM 的對(duì)準(zhǔn)和集成任務(wù)。 如今,生命科學(xué)領(lǐng)域成功應(yīng)用的大多數(shù)光子學(xué)技術(shù)都基于某種形式的熒光檢測。這些技術(shù)包括研究人員用于活細(xì)胞成像的
    的頭像 發(fā)表于 09-05 06:20 ?237次閱讀
    激光引擎改善<b class='flag-5'>生命科學(xué)</b>應(yīng)用

    里瑞通推出突破性晶片液冷技術(shù)

    在云計(jì)算和數(shù)據(jù)中心領(lǐng)域,里瑞通(Digital Realty)一直是技術(shù)創(chuàng)新的引領(lǐng)者。近日,該公司宣布推出了一項(xiàng)突破性的晶片液冷技術(shù),為高密度部署支持
    的頭像 發(fā)表于 05-31 11:22 ?545次閱讀

    合肥高新區(qū)與雪湖科技簽署生命科學(xué)超算總部項(xiàng)目,聚焦生物科技和新材料領(lǐng)域

    此次計(jì)劃,雪湖科技擬斥資3億元,在合肥高新區(qū)打造生命科學(xué)超算總部。該建設(shè)旨在構(gòu)建專門用于生物醫(yī)藥和新材料研發(fā)的高性能計(jì)算集群。
    的頭像 發(fā)表于 03-06 15:34 ?565次閱讀

    淺析推動(dòng)生命科學(xué)發(fā)展的光泵半導(dǎo)體激光(OPSL)技術(shù)(三)

    OPSL在流式細(xì)胞儀及DNA測序領(lǐng)域的應(yīng)用及新進(jìn)發(fā)展。 OPSL 擁有波長可靈活擴(kuò)展、功率可調(diào)、體積小巧、高度可靠以及高光電轉(zhuǎn)換效率等特點(diǎn),在許多生命科學(xué)應(yīng)用中大獲成功。此外,OPSL還具有噪聲低、光束質(zhì)量優(yōu)異、直接數(shù)字調(diào)制的特點(diǎn)以及光纖耦合選項(xiàng),其緊湊型結(jié)構(gòu)、智能化即插
    的頭像 發(fā)表于 02-01 06:33 ?477次閱讀
    淺析推動(dòng)<b class='flag-5'>生命科學(xué)</b>發(fā)展的光泵半導(dǎo)體激光(OPSL)<b class='flag-5'>技術(shù)</b>(三)

    多波長激光引擎 - 生命科學(xué)儀器的未來

    流式細(xì)胞儀等生命科學(xué)儀器制造商越來越多地從分離的單臺(tái)激光器轉(zhuǎn)向激光引擎,后者是一種可定制的緊湊型集成組件,以特定應(yīng)用形式提供成形聚焦光束。 激光器會(huì)產(chǎn)生一束光,要么是脈沖光,要么是連續(xù)波光。 幾乎
    的頭像 發(fā)表于 01-31 06:31 ?265次閱讀

    淺析推動(dòng)生命科學(xué)發(fā)展的OPSL技術(shù)(二)

    光泵半導(dǎo)體激光技術(shù)(Optically Pumped SemiconductorLasers)已經(jīng)從新一代連續(xù)激光技術(shù)迅速轉(zhuǎn)變成為生命科學(xué)領(lǐng)域內(nèi)的主導(dǎo)力量,其具備的一系列獨(dú)特優(yōu)勢使之成
    的頭像 發(fā)表于 01-31 06:30 ?367次閱讀
    淺析推動(dòng)<b class='flag-5'>生命科學(xué)</b>發(fā)展的OPSL<b class='flag-5'>技術(shù)</b>(二)

    淺析推動(dòng)生命科學(xué)發(fā)展的光泵半導(dǎo)體激光(OPSL)技術(shù)(一)

    具備高性能、高可靠、低使用成本等優(yōu)勢。 ▼ 應(yīng)用背景要求 數(shù)年來,可見光和紫外光連續(xù)激光器已在醫(yī)學(xué)診斷、生物成像和其他生命科學(xué)應(yīng)用領(lǐng)域的各種儀器中得到廣泛應(yīng)用。典型的應(yīng)用實(shí)例包括流
    的頭像 發(fā)表于 01-30 06:30 ?430次閱讀
    淺析推動(dòng)<b class='flag-5'>生命科學(xué)</b>發(fā)展的光泵半導(dǎo)體激光(OPSL)<b class='flag-5'>技術(shù)</b>(一)

    傳音Infinix在CES 2024上推出最新突破性技術(shù)E-Color Shift

    近日,傳音旗下品牌Infinix在CES 2024上推出最新突破性技術(shù)E-Color Shift,可以使手機(jī)背面面板在不消耗電力的情況改變并保持鮮艷的顏色。
    的頭像 發(fā)表于 01-23 11:39 ?1095次閱讀

    2024 年“十大突破性技術(shù)”榜單

    初,《麻省理工科技評(píng)論》(MITTechnologyReview)發(fā)布了其2024年“十大突破性技術(shù)”榜單,這份榜單突出了一些可能對(duì)世界產(chǎn)生顯著影響的技術(shù)。在最新的20
    的頭像 發(fā)表于 01-16 08:27 ?1433次閱讀
    2024 年“<b class='flag-5'>十大</b><b class='flag-5'>突破性</b><b class='flag-5'>技術(shù)</b>”榜單

    特色應(yīng)用:TriVista在生命科學(xué)領(lǐng)域的應(yīng)用

    。研究者使用同步輻射紫外共振拉曼(UVRR)光譜,目的是探討離子液體(ionic liquids,IL)的濃度在穩(wěn)定DNA自然構(gòu)象中的作用。 紫外共振拉曼光譜已成為蛋白質(zhì)結(jié)構(gòu)分析領(lǐng)域的有力工具。在共振條件,這種技術(shù)可以選擇性地
    的頭像 發(fā)表于 01-09 06:32 ?270次閱讀
    特色應(yīng)用:TriVista在<b class='flag-5'>生命科學(xué)</b><b class='flag-5'>領(lǐng)域</b>的應(yīng)用

    FactoryTalk PharmaSuite 適用于生命科學(xué)行業(yè)的制造執(zhí)行系統(tǒng)解決方案

    在過去幾年里,生命科學(xué)行業(yè)發(fā)生了巨大的變化,制造商面臨前所未有的壓力,他們不僅需要搶先占領(lǐng)市場,還需要超越現(xiàn)有質(zhì)量標(biāo)準(zhǔn)。為保持競爭優(yōu)勢,企業(yè)需要大幅 提高其組織敏捷 ,以及提高應(yīng)對(duì)市場波動(dòng)的彈性
    的頭像 發(fā)表于 12-25 08:25 ?513次閱讀
    FactoryTalk PharmaSuite 適用于<b class='flag-5'>生命科學(xué)</b>行業(yè)的制造執(zhí)行系統(tǒng)解決方案

    生成式AI正在如何改變醫(yī)療保健和生命科學(xué)

    由于疫情的肆虐,近年來人們對(duì)醫(yī)療保健和生命科學(xué)領(lǐng)域的關(guān)注,也提升到了一個(gè)前所未有的高度。
    的頭像 發(fā)表于 12-09 10:52 ?1239次閱讀