1、農(nóng)作物高光譜遙感識(shí)別和分類(lèi)
農(nóng)作物遙感識(shí)別是遙感技術(shù)在農(nóng)業(yè)領(lǐng)域應(yīng)用的重要內(nèi)容,也是資源遙感的重要組成部分。植被光譜不僅具有高度相似性和空間變異性,而且具有時(shí)間動(dòng)態(tài)性強(qiáng)等特點(diǎn)。不同植被的光譜隨時(shí)間的變化規(guī)律也具有明顯的區(qū)別,因此充分發(fā)揮高光譜遙感的獨(dú)特性能,特別是其在區(qū)分地表細(xì)微差別方面的優(yōu)勢(shì),同時(shí)結(jié)合植被的時(shí)間動(dòng)態(tài)特征,將大大提高土地覆蓋類(lèi)型的識(shí)別與分類(lèi)精度。
基于常州水稻生長(zhǎng)期80波段PHI航空高光譜圖像,利用混合決策樹(shù)方法對(duì)水稻品種進(jìn)行了高光譜圖像精細(xì)分類(lèi),完成了對(duì)11種地物(其中6個(gè)水稻品種)的劃分,測(cè)試樣本的分類(lèi)精度達(dá)到94.9%。
以中國(guó)華北地區(qū)冬小麥識(shí)別為例,利用MODIS自身光譜信息,即可實(shí)現(xiàn)作物遙感全覆蓋自動(dòng)識(shí)別,并可達(dá)到較高的精度,比傳統(tǒng)方法認(rèn)為的冬小麥遙感識(shí)別的最佳時(shí)間(返青期的3月份)提前約一個(gè)季度。
以上研究結(jié)果表明,高光譜遙感技術(shù)能有效地對(duì)作物進(jìn)行分類(lèi)和識(shí)別,且分類(lèi)精度較高,這對(duì)于大比例尺尺度上研究地表作物覆蓋,提取更加細(xì)致的信息提供了有力保障。
2、高光譜遙感監(jiān)測(cè)作物葉面積指數(shù)、生物量和葉綠素含量
葉面積指數(shù)(LAI)通常是指單位面積土地上所有葉片表面積的總和,或單位面積上植物葉片的垂直投影面積總和。它是生態(tài)系統(tǒng)的一個(gè)重要結(jié)構(gòu)參數(shù),可用來(lái)反映植物葉面數(shù)量、冠層結(jié)構(gòu)變化、植物群落生命活力及其環(huán)境效應(yīng),為植物冠層表面物質(zhì)和能量交換的描述提供結(jié)構(gòu)化的定量信息。葉面積指數(shù)與生物量(干重、鮮重)和葉綠素是衡量作物生長(zhǎng)狀況的重要指標(biāo)。如何利用遙感技術(shù)實(shí)時(shí)監(jiān)測(cè)植株葉面積、生物量和葉綠素,對(duì)于作物的管理調(diào)控及估產(chǎn)具有重要意義。
采用單變量線性與非線性擬合模型和逐步回歸分析,建立水稻LAI的高光譜遙感估算模型,提出高光譜變量與LAI之間的擬合分析中,藍(lán)邊內(nèi)一階微分的總和與紅邊內(nèi)一階微分總和的比值和歸一化差植被指數(shù)是最佳變量。
利用棉花不同品種、不同密度冠層關(guān)鍵生育時(shí)期的反射光譜數(shù)據(jù),應(yīng)用光譜多元統(tǒng)計(jì)分析技術(shù)與光譜微分處理技術(shù),建立了基于植被指數(shù)和歸一化植被指數(shù)的5種函數(shù)形式的棉花干物質(zhì)積累估測(cè)模型。
由以上研究結(jié)果可知,利用高光譜數(shù)據(jù)可以及時(shí)估算及預(yù)測(cè)作物的生物量、葉面積指數(shù)、葉綠素等生理參數(shù)。目前,光譜特征正成為實(shí)時(shí)、快速監(jiān)測(cè)作物長(zhǎng)勢(shì)的有效手段。
3、高光譜遙感監(jiān)測(cè)作物養(yǎng)分及水分狀況
在農(nóng)作物生產(chǎn)中,水肥是影響作物生長(zhǎng)的最主要因素之一。氮磷鉀肥是作物生長(zhǎng)和產(chǎn)量形成所必需的重要元素;水分是作物的主要組成成分,水分虧缺將直接影響作物的生理生化過(guò)程和形態(tài)結(jié)構(gòu),從而影響作物生長(zhǎng)。因此,及時(shí)準(zhǔn)確地監(jiān)測(cè)作物的水分狀況對(duì)提高作物水分管理水平、指導(dǎo)節(jié)水農(nóng)業(yè)生產(chǎn)具有重要意義。利用高光譜遙感技術(shù)對(duì)作物礦質(zhì)營(yíng)養(yǎng)和水分脅迫進(jìn)行監(jiān)測(cè),進(jìn)而估算作物的營(yíng)養(yǎng)和需水狀況,從而指導(dǎo)施肥灌溉,是近年來(lái)發(fā)展起來(lái)的一門(mén)新技術(shù)。
大量研究結(jié)果表明,利用高光譜遙感技術(shù)可以對(duì)作物的營(yíng)養(yǎng)狀況和水分含量進(jìn)行比較準(zhǔn)確的分析和檢測(cè),為變量施肥和灌溉提供參考,從而節(jié)省農(nóng)業(yè)資源的投入。高光譜養(yǎng)分和水分診斷模型在農(nóng)業(yè)生產(chǎn)中具有較高的應(yīng)用價(jià)值和廣闊的應(yīng)用前景。
4、農(nóng)作物長(zhǎng)勢(shì)監(jiān)測(cè)和估產(chǎn)
高光譜遙感的超多波段(幾十、上百個(gè))和高分辨率(3~20nm)使其可用于探測(cè)植被的精細(xì)光譜信息(特別是植被各種生化組分的吸收光譜信息),反演植被各生化組分的含量,監(jiān)測(cè)植被的生長(zhǎng)狀況。
另外,還可通過(guò)高光譜信息監(jiān)測(cè)植物病蟲(chóng)害。植物病蟲(chóng)害監(jiān)測(cè)是通過(guò)監(jiān)測(cè)葉片的生物化學(xué)成分來(lái)實(shí)現(xiàn)的,病蟲(chóng)害感染導(dǎo)致葉片葉肉細(xì)胞的結(jié)構(gòu)發(fā)生變化,進(jìn)而使葉片的光譜反射率發(fā)生變化。
利用遙感信息進(jìn)行作物估產(chǎn)是利用某種植被指數(shù)在作物生長(zhǎng)發(fā)育關(guān)鍵期內(nèi)的和與產(chǎn)量的實(shí)測(cè)或統(tǒng)計(jì)數(shù)據(jù)間建立的各種形式的相關(guān)方程來(lái)實(shí)現(xiàn)的,如目前單產(chǎn)估算應(yīng)用較多的是回歸分析法,其基本原理為:
式中,y為作物產(chǎn)量;xi為經(jīng)過(guò)平滑的光譜反射率或DNVI指數(shù)。高光譜遙感技術(shù)可以快速、簡(jiǎn)便、大面積、無(wú)破壞、客觀地監(jiān)測(cè)作物的長(zhǎng)勢(shì)并對(duì)作物進(jìn)行估產(chǎn),高光譜遙感技術(shù)在生產(chǎn)中具有良好的應(yīng)用前景,是農(nóng)作物長(zhǎng)勢(shì)監(jiān)測(cè)和估產(chǎn)的主要發(fā)展方向。
5、展望
高光譜遙感是一門(mén)極具發(fā)展?jié)摿Φ募滦吞綔y(cè)技術(shù)、精密光學(xué)機(jī)械、高速信號(hào)處理技術(shù)、計(jì)算機(jī)處理技術(shù)為一體的多學(xué)科綜合性應(yīng)用技術(shù)。隨著現(xiàn)代科學(xué)的不斷發(fā)展,特別是現(xiàn)代航空技術(shù)、攝影技術(shù)和計(jì)算機(jī)技術(shù)的不斷發(fā)展,高光譜遙感技術(shù)必將得到長(zhǎng)足的發(fā)展,該技術(shù)與“GPS”和“GIS”相結(jié)合,在農(nóng)業(yè)生產(chǎn)中將具有更廣闊的應(yīng)用前景。
審核編輯 黃昊宇
-
遙感
+關(guān)注
關(guān)注
0文章
244瀏覽量
16795 -
高光譜
+關(guān)注
關(guān)注
0文章
328瀏覽量
9917
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論