精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

機器視覺常用的3種目標識別方法

jt_rfid5 ? 來源:機器視覺沙龍 ? 作者:機器視覺沙龍 ? 2022-11-30 15:43 ? 次閱讀

隨著機器視覺技術的快速發(fā)展,傳統(tǒng)很多需要人工來手動操作的工作,漸漸地被機器所替代。

傳統(tǒng)方法做目標識別大多都是靠人工實現(xiàn),從形狀、顏色、長度、寬度、長寬比來確定被識別的目標是否符合標準,最終定義出一系列的規(guī)則來進行目標識別。這樣的方法當然在一些簡單的案例中已經應用的很好,唯一的缺點是隨著被識別物體的變動,所有的規(guī)則和算法都要重新設計和開發(fā),即使是同樣的產品,不同批次的變化都會造成不能重用的現(xiàn)實。

而隨著機器學習深度學習的發(fā)展,很多肉眼很難去直接量化的特征,深度學習可以自動學習這些特征,這就是深度學習帶給我們的優(yōu)點和前所未有的吸引力。

很多特征我們通過傳統(tǒng)算法無法量化,或者說很難去做到的,深度學習可以。特別是在圖像分類、目標識別這些問題上有顯著的提升。

視覺常用的目標識別方法有三種:Blob分析法(BlobAnalysis)、模板匹配法、深度學習法。下面就三種常用的目標識別方法進行對比。

Blob分析法

BlobAnalysis

計算機視覺中的Blob是指圖像中的具有相似顏色、紋理等特征所組成的一塊連通區(qū)域。Blob分析(BlobAnalysis)是對圖像中相同像素的連通域進行分析(該連通域稱為Blob)。其過程就是將圖像進行二值化,分割得到前景和背景,然后進行連通區(qū)域檢測,從而得到Blob塊的過程。簡單來說,blob分析就是在一塊“光滑”區(qū)域內,將出現(xiàn)“灰度突變”的小區(qū)域尋找出來。

舉例來說,假如現(xiàn)在有一塊剛生產出來的玻璃,表面非常光滑,平整。如果這塊玻璃上面沒有瑕疵,那么,我們是檢測不到“灰度突變”的;相反,如果在玻璃生產線上,由于種種原因,造成了玻璃上面有一個凸起的小泡、有一塊黑斑、有一點裂縫,那么,我們就能在這塊玻璃上面檢測到紋理,經二值化(BinaryThresholding)處理后的圖像中色斑可認為是blob。而這些部分,就是生產過程中造成的瑕疵,這個過程,就是Blob分析。

Blob分析工具可以從背景中分離出目標,并可以計算出目標的數(shù)量、位置、形狀、方向和大小,還可以提供相關斑點間的拓撲結構。在處理過程中不是對單個像素逐一分析,而是對圖像的行進行操作。圖像的每一行都用游程長度編碼(RLE)來表示相鄰的目標范圍。這種算法與基于像素的算法相比,大大提高了處理的速度。

但另一方面,Blob分析并不適用于以下圖像:

1.低對比度圖像;

2.必要的圖像特征不能用2個灰度級描述;

3.按照模版檢測(圖形檢測需求)。

總的來說,Blob分析就是檢測圖像的斑點,適用于背景單一,前景缺陷不區(qū)分類別,識別精度要求不高的場景。

模板匹配法

template matching

模板匹配是一種最原始、最基本的模式識別方法,研究某一特定對象物的圖案位于圖像的什么地方,進而識別對象物,這就是一個匹配問題。它是圖像處理中最基本、最常用的匹配方法。換句話說就是一副已知的需要匹配的小圖像,在一副大圖像中搜尋目標,已知該圖中有要找的目標,且該目標同模板有相同的尺寸、方向和圖像元素,通過統(tǒng)計計算圖像的均值、梯度、距離、方差等特征可以在圖中找到目標,確定其坐標位置。

這就說明,我們要找的模板是圖像里標標準準存在的,這里說的標標準準,就是說,一旦圖像或者模板發(fā)生變化,比如旋轉,修改某幾個像素,圖像翻轉等操作之后,我們就無法進行匹配了,這也是這個算法的弊端。

所以這種匹配算法,就是在待檢測圖像上,從左到右,從上向下對模板圖像與小東西的圖像進行比對。

7490513a-3feb-11ed-b1c7-dac502259ad0.png

這種方法相比Blob分析有較好的檢測精度,同時也能區(qū)分不同的缺陷類別,這相當于是一種搜索算法,在待檢測圖像上根據(jù)不同roi用指定的匹配方法與模板庫中的所有圖像進行搜索匹配,要求缺陷的形狀、大小、方法都有較高的一致性,因此想要獲得可用的檢測精度需要構建較完善的模板庫。

深度學習法

deep learning method

2014年R-CNN的提出,使得基于CNN的目標檢測算法逐漸成為主流。深度學習的應用,使檢測精度和檢測速度都獲得了改善。

卷積神經網(wǎng)絡不僅能夠提取更高層、表達能力更好的特征,還能在同一個模型中完成對于特征的提取、選擇和分類。

在這方面,主要有兩類主流的算法:

一類是結合RPN網(wǎng)絡的,基于分類的R-CNN系列兩階目標檢測算法(twostage);

另一類則是將目標檢測轉換為回歸問題的一階目標檢測算法(singlestage)。

物體檢測的任務是找出圖像或視頻中的感興趣物體,同時檢測出它們的位置和大小,是機器視覺領域的核心問題之一。

74bb59f2-3feb-11ed-b1c7-dac502259ad0.png

物體檢測過程中有很多不確定因素,如圖像中物體數(shù)量不確定,物體有不同的外觀、形狀、姿態(tài),加之物體成像時會有光照、遮擋等因素的干擾,導致檢測算法有一定的難度。

進入深度學習時代以來,物體檢測發(fā)展主要集中在兩個方向:twostage算法如R-CNN系列和onestage算法如YOLO、SSD等。兩者的主要區(qū)別在于twostage算法需要先生成proposal(一個有可能包含待檢物體的預選框),然后進行細粒度的物體檢測。而onestage算法會直接在網(wǎng)絡中提取特征來預測物體分類和位置。

兩階算法中區(qū)域提取算法核心是卷積神經網(wǎng)絡CNN,先利用CNN骨干提取特征,然后找出候選區(qū)域,最后滑動窗口確定目標類別與位置。

R-CNN首先通過SS算法提取2k個左右的感興趣區(qū)域,再對感興趣區(qū)域進行特征提取。存在缺陷:感興趣區(qū)域彼此之間權值無法共享,存在重復計算,中間數(shù)據(jù)需單獨保存占用資源,對輸入圖片強制縮放影響檢測準確度。

74e64e0a-3feb-11ed-b1c7-dac502259ad0.png

SPP-NET在最后一個卷積層和第一個全連接層之間做些處理,保證輸入全連接層的尺寸一致即可解決輸入圖像尺寸受限的問題。SPP-NET候選區(qū)域包含整張圖像,只需通過一次卷積網(wǎng)絡即可得到整張圖像和所有候選區(qū)域的特征。

FastR-CNN借鑒SPP-NET的特征金字塔,提出ROIPooling把各種尺寸的候選區(qū)域特征圖映射成統(tǒng)一尺度的特征向量,首先,將不同大小的候選區(qū)域都切分成M×N塊,再對每塊都進行maxpooling得到1個值。這樣,所有候選區(qū)域特征圖就都統(tǒng)一成M×N維的特征向量了。但是,利用SS算法產生候選框對時間消耗非常大。

FasterR-CNN是先用CNN骨干網(wǎng)提取圖像特征,由RPN網(wǎng)絡和后續(xù)的檢測器共享,特征圖進入RPN網(wǎng)絡后,對每個特征點預設9個不同尺度和形狀的錨盒,計算錨盒和真實目標框的交并比和偏移量,判斷該位置是否存在目標,將預定義的錨盒分為前景或背景,再根據(jù)偏差損失訓練RPN網(wǎng)絡,進行位置回歸,修正ROI的位置,最后將修正的ROI傳入后續(xù)網(wǎng)絡。但是,在檢測過程中,RPN網(wǎng)絡需要對目標進行一次回歸篩選以區(qū)分前景和背景目標,后續(xù)檢測網(wǎng)絡對RPN輸出的ROI再一次進行細分類和位置回歸,兩次計算導致模型參數(shù)量大。

MaskR-CNN在FasterR-CNN中加了并行的mask分支,對每個ROI生成一個像素級別的二進制掩碼。在FasterR-CNN中,采用ROIPooling產生統(tǒng)一尺度的特征圖,這樣再映射回原圖時就會產生錯位,使像素之間不能精準對齊。這對目標檢測產生的影響相對較小,但對于像素級的分割任務,誤差就不容忽視了。MaskR-CNN中用雙線性插值解決像素點不能精準對齊的問題。但是,由于繼承兩階段算法,實時性仍不理想。

一階算法在整個卷積網(wǎng)絡中進行特征提取、目標分類和位置回歸,通過一次反向計算得到目標位置和類別,在識別精度稍弱于兩階段目標檢測算法的前提下,速度有了極大的提升。

YOLOv1把輸入圖像統(tǒng)一縮放到448×448×3,再劃分為7×7個網(wǎng)格,每格負責預測兩個邊界框bbox的位置和置信度。這兩個b-box對應同一個類別,一個預測大目標,一個預測小目標。bbox的位置不需要初始化,而是由YOLO模型在權重初始化后計算出來的,模型在訓練時隨著網(wǎng)絡權重的更新,調整b-box的預測位置。但是,該算法對小目標檢測不佳,每個網(wǎng)格只能預測一個類別。

YOLOv2把原始圖像劃分為13×13個網(wǎng)格,通過聚類分析,確定每個網(wǎng)格設置5個錨盒,每個錨盒預測1個類別,通過預測錨盒和網(wǎng)格之間的偏移量進行目標位置回歸。

SSD保留了網(wǎng)格劃分方法,但從基礎網(wǎng)絡的不同卷積層提取特征。隨著卷積層數(shù)的遞增,錨盒尺寸設置由小到大,以此提升SSD對多尺度目標的檢測精度。

YOLOv3通過聚類分析,每個網(wǎng)格預設3個錨盒,只用darknet前52層,并大量使用殘差層。使用降采樣降低池化對梯度下降的負面效果。YOLOv3通過上采樣提取深層特征,使其與將要融合的淺層特征維度相同,但通道數(shù)不同,在通道維度上進行拼接實現(xiàn)特征融合,融合了13×13×255、26×26×255和52×52×255共3個尺度的特征圖,對應的檢測頭也都采用全卷積結構。

YOLOv4在原有YOLO目標檢測架構的基礎上,采用了近些年CNN領域中最優(yōu)秀的優(yōu)化策略,從數(shù)據(jù)處理、主干網(wǎng)絡、網(wǎng)絡訓練、激活函數(shù)、損失函數(shù)等各個方面都進行了不同程度的優(yōu)化。時至今日,已經有很多精度比較高的目標檢測算法提出,包括最近視覺領域的transformer研究也一直在提高目標檢測算法的精度。

總結來看,表示的選擇會對機器學習算法的性能產生巨大的影響,監(jiān)督學習訓練的前饋網(wǎng)絡可視為表示學習的一種形式。依此來看傳統(tǒng)的算法如Blob分析和模板匹配都是手工設計其特征表示,而神經網(wǎng)絡則是通過算法自動學習目標的合適特征表示,相比手工特征設計來說其更高效快捷,也無需太多的專業(yè)的特征設計知識,因此其能夠識別不同場景中形狀、大小、紋理等不一的目標,隨著數(shù)據(jù)集的增大,檢測的精度也會進一步提高。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 機器視覺
    +關注

    關注

    161

    文章

    4345

    瀏覽量

    120111
  • 深度學習
    +關注

    關注

    73

    文章

    5492

    瀏覽量

    120978

原文標題:【光電智造】一文講透機器視覺常用的 3 種“目標識別”方法

文章出處:【微信號:今日光電,微信公眾號:今日光電】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    目標檢測與識別技術有哪些

    目標檢測與識別技術是計算機視覺領域的重要研究方向,廣泛應用于安全監(jiān)控、自動駕駛、醫(yī)療診斷、工業(yè)自動化等領域。 目標檢測與識別技術的基本概念
    的頭像 發(fā)表于 07-17 09:40 ?534次閱讀

    目標檢測與識別技術的關系是什么

    任務是在圖像或視頻中快速準確地定位出感興趣的目標,并給出目標的位置信息。目標檢測技術通常包括候選區(qū)域提取、特征提取、分類器設計等步驟。 目標識別技術
    的頭像 發(fā)表于 07-17 09:38 ?504次閱讀

    基于Python的深度學習人臉識別方法

    基于Python的深度學習人臉識別方法是一個涉及多個技術領域的復雜話題,包括計算機視覺、深度學習、以及圖像處理等。在這里,我將概述一個基本的流程,包括數(shù)據(jù)準備、模型選擇、訓練過程、以及測試與評估,并附上簡單的代碼示例。
    的頭像 發(fā)表于 07-14 11:52 ?1184次閱讀

    機器視覺技術中圖像分割方法有哪些

    機器視覺技術是人工智能領域的一個重要分支,它涉及到圖像處理、模式識別機器學習等多個學科。圖像分割是機器
    的頭像 發(fā)表于 07-04 11:34 ?779次閱讀

    機器視覺常用的光源類型及優(yōu)點?

    機器視覺是一利用計算機視覺技術來實現(xiàn)對圖像的獲取、處理和分析的技術。在機器視覺系統(tǒng)中,光源是至
    的頭像 發(fā)表于 07-04 10:28 ?507次閱讀

    開發(fā)者手機 AI - 目標識別 demo

    應用的demo。 應用程序通過相機進行預覽,對預覽畫面中的物體進行目標識別,目前該應用程序支持識別100物體。 系統(tǒng)架構 下圖為demo應用以及Openharmony AI子系統(tǒng)的架構圖。
    發(fā)表于 04-11 16:14

    集成芯片管腳順序識別方法

    集成芯片管腳順序的識別方法主要依賴于芯片的類型和特征。
    的頭像 發(fā)表于 03-19 18:14 ?4924次閱讀

    一目了然:機器視覺缺陷識別方法

    機器視覺缺陷檢測技術在工業(yè)生產、醫(yī)療影像、安防監(jiān)控等領域有著廣泛的應用,能夠提高產品質量、生產效率和安全性。機器視覺缺陷檢測原理機器
    的頭像 發(fā)表于 03-18 17:54 ?1108次閱讀
    一目了然:<b class='flag-5'>機器</b><b class='flag-5'>視覺</b>缺陷<b class='flag-5'>識別方法</b>

    機器視覺常用的三目標識別方法解析

    隨著機器視覺技術的快速發(fā)展,傳統(tǒng)很多需要人工來手動操作的工作,漸漸地被機器所替代。傳統(tǒng)方法目標識別大多都是靠人工實現(xiàn),從形狀、顏色、長度、
    的頭像 發(fā)表于 03-14 08:26 ?685次閱讀
    <b class='flag-5'>機器</b><b class='flag-5'>視覺</b><b class='flag-5'>常用</b>的三<b class='flag-5'>種</b><b class='flag-5'>目標識別方法</b>解析

    機器視覺的圖像目標識別方法綜述

    文章來源:MEMS引言從20世紀80年代開始,機器視覺技術的發(fā)展速度不斷加快,已經走進了人們的日常生活與工作之中。機器視覺的圖像目標識別系統(tǒng)
    的頭像 發(fā)表于 02-23 08:26 ?688次閱讀
    <b class='flag-5'>機器</b><b class='flag-5'>視覺</b>的圖像<b class='flag-5'>目標識別方法</b>綜述

    貼片電感的識別方法及故障更換方法

    貼片電感的識別方法及故障更換方法 貼片電感是現(xiàn)代電子設備中常用的一電子元件,它們通常用于電源濾波、電感耦合和振蕩電路中。在使用和維修過程中
    的頭像 發(fā)表于 02-03 15:23 ?1784次閱讀

    機器視覺軟件有哪些 機器視覺軟件的優(yōu)點

    機器視覺軟件是一利用計算機視覺技術來模擬和彌補人眼視覺功能的軟件系統(tǒng)。它可以通過對圖像和視頻進行分析,
    的頭像 發(fā)表于 02-02 10:53 ?1462次閱讀

    機器視覺的圖像目標識別方法操作要點

    通過加強圖像分割,能夠提高機器視覺的圖像目標識別的自動化水平,使得圖像目標識別效果更加顯著。圖像分割的方法有很多種,不同
    發(fā)表于 01-15 12:17 ?398次閱讀

    PCBA上電子元件極性識別方法

    【必看】PCBA上電子元件極性識別方法
    的頭像 發(fā)表于 01-11 10:18 ?1742次閱讀
    PCBA上電子元件極性<b class='flag-5'>識別方法</b>

    保險電阻的識別方法

    保險電阻識別方法? 保險電阻的正確識別對于電子設備的正常運行和使用安全至關重要。本文旨在詳盡、詳實、細致地探討保險電阻的識別方法,幫助讀者更好地理解和應用該技術。 一、保險電阻的基本概念和作用 保險
    的頭像 發(fā)表于 12-15 10:55 ?1524次閱讀