精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

基于視覺transformer的高效時空特征學習算法

CVer ? 來源:ECCV 2022 ? 作者:ECCV 2022 ? 2022-12-12 15:01 ? 次閱讀

二、背景

高效的時空建模(Spatiotemporal modeling)是視頻理解和動作識別的核心問題。相較于圖像的Transformer網絡,視頻由于增加了時間維度,如果將Transformer中的自注意力機制(Self-Attention)簡單擴展到時空維度,將會導致時空自注意力高昂的計算復雜度和空間復雜度。許多工作嘗試對時空自注意力進行分解,例如ViViT和Timesformer。這些方法雖然減小了計算復雜度,但會引入額外的參數量。本文提出了一種簡單高效的時空自注意力Transformer,在對比2D Transformer網絡不增加計算量和參數量情況下,實現了時空自注意力機制。并且在Sthv1&Sthv2, Kinetics400, Diving48取得了很好的性能。

三、方法

視覺Transofrmer通常將圖像分割為不重疊的塊(patch),patch之間通過自注意力機制(Self-Attention)進行特征聚合,patch內部通過全連接層(FFN)進行特征映射。每個Transformer block中,包含Self-Attention和FFN,通過堆疊Transformer block的方式達到學習圖像特征的目的。

在視頻動作識別領域,輸入的數據是連續采樣的多幀圖像(常用8幀、16幀、32幀等)學習視頻的時空特征,不僅要學習單幀圖像的空間視覺特征,更要建模幀之間的時域特征。本文提出一種基于視覺transformer的高效時空特征學習算法,具體來說,我們通過將patch按照一定的規則進行移動(patch shift),把當前幀中的一部分patch移動到其他幀,同時其他幀也會有一部分patch移動到當前幀。經過patch移動之后,對每一幀圖像的patch分別做Self-Attention,這一步學習的特征就同時包含了時空特征。具體思想可以由下圖所示:

9564e2d0-7944-11ed-8abf-dac502259ad0.png

在常用的2D圖像視覺Transformer網絡結構上,將上述patch shift操作插入到self-attention操作之前即可,無需額外操作,下圖是patch shift transformer block,相比其他視頻transformer的結構,我們的操作不增加額外的計算量,僅需進行內存數據移動操作即可。對于patch shift的移動規則,我們提出幾種設計原則:1. 不同幀的塊盡可能均勻地分布。2.合適的時域感受野。3.保持一定的移動塊比例。具體的分析,讀者可以參考正文。

我們對通道移動(Channel shift) 與 塊移動(patch shift)進行了詳盡的分析和討論,這兩種方法的可視化如下:

95ab73a8-7944-11ed-8abf-dac502259ad0.png

通道移動(Channel shift) 與 塊移動(patch shift)都使用了shift操作,但channel shift是通過移動所有patch的部分channel的特征來實現時域特征的建模,而patch shift是通過移動部分patch的全部channel與Self-attention來實現時域特征的學習。可以認為channel shift的時空建模在空域是稠密的,但在channel上是稀疏的。而patch shift在空域稀疏,在channel上是稠密的。因此兩種方法具有一定的互補性。基于此,我們提出交替循環使用 patchshift和channel shift。網絡結構如下圖所示:

95c20c4e-7944-11ed-8abf-dac502259ad0.png

四、實驗結果

1. 消融實驗

95eafd70-7944-11ed-8abf-dac502259ad0.png

2. 與SOTA方法進行對比

961daf2c-7944-11ed-8abf-dac502259ad0.png

969a1bf2-7944-11ed-8abf-dac502259ad0.png

9761b4dc-7944-11ed-8abf-dac502259ad0.png

3. 運行速度

可以看到,PST的實際推理速度和2D的Swin網絡接近,但具有時空建模能力,性能顯著優于2D Swin。和Video-Swin網絡相比,則具有明顯的速度和顯存優勢。

9789f1a4-7944-11ed-8abf-dac502259ad0.png

4. 可視化結果

圖中從上到下依次為Kinetics400, Diving48, Sthv1的可視化效果。PST通過學習關聯區域的相關性,并且特征圖能夠反映出視頻當中動作的軌跡。

審核編輯:郭婷

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 內存
    +關注

    關注

    8

    文章

    3002

    瀏覽量

    73885

原文標題:ECCV 2022 | 阿里提出:快速動作識別的時空自注意力模型

文章出處:【微信號:CVer,微信公眾號:CVer】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    【《大語言模型應用指南》閱讀體驗】+ 基礎知識學習

    語言的表達方式和生成能力。通過預測文本中缺失的部分或下一個詞,模型逐漸掌握語言的規律和特征。 常用的模型結構 Transformer架構:大語言模型通常基于Transformer架構,這是一種能夠處理序列數據
    發表于 08-02 11:03

    opencv圖像識別有什么算法

    OpenCV(Open Source Computer Vision Library)是一個開源的計算機視覺和機器學習軟件庫,提供了大量的圖像處理和計算機視覺相關的算法。以下是一些常見
    的頭像 發表于 07-16 10:40 ?837次閱讀

    深度學習在工業機器視覺檢測中的應用

    識別等任務。傳統的機器視覺檢測方法通常依賴于手工設計的特征和固定的算法,難以應對復雜多變的工業環境。而深度學習的引入,為工業機器視覺檢測帶來
    的頭像 發表于 07-08 10:40 ?975次閱讀

    機器學習的經典算法與應用

    關于數據機器學習就是喂入算法和數據,讓算法從數據中尋找一種相應的關系。Iris鳶尾花數據集是一個經典數據集,在統計學習和機器學習領域都經常被
    的頭像 發表于 06-27 08:27 ?1576次閱讀
    機器<b class='flag-5'>學習</b>的經典<b class='flag-5'>算法</b>與應用

    通過強化學習策略進行特征選擇

    來源:DeepHubIMBA特征選擇是構建機器學習模型過程中的決定性步驟。為模型和我們想要完成的任務選擇好的特征,可以提高性能。如果我們處理的是高維數據集,那么選擇特征就顯得尤為重要。
    的頭像 發表于 06-05 08:27 ?323次閱讀
    通過強化<b class='flag-5'>學習</b>策略進行<b class='flag-5'>特征</b>選擇

    視覺Transformer基本原理及目標檢測應用

    視覺Transformer的一般結構如圖2所示,包括編碼器和解碼器兩部分,其中編碼器每一層包括一個多頭自注意力模塊(self-attention)和一個位置前饋神經網絡(FFN)。
    發表于 04-03 10:32 ?3249次閱讀
    <b class='flag-5'>視覺</b><b class='flag-5'>Transformer</b>基本原理及目標檢測應用

    基于Transformer模型的壓縮方法

    基于Transformer架構的大型模型在人工智能領域中發揮著日益重要的作用,特別是在自然語言處理(NLP)和計算機視覺(CV)領域。
    的頭像 發表于 02-22 16:27 ?617次閱讀
    基于<b class='flag-5'>Transformer</b>模型的壓縮方法

    一文詳解Transformer神經網絡模型

    Transformer模型在強化學習領域的應用主要是應用于策略學習和值函數近似。強化學習是指讓機器在與環境互動的過程中,通過試錯來學習最優的
    發表于 02-20 09:55 ?1.3w次閱讀
    一文詳解<b class='flag-5'>Transformer</b>神經網絡模型

    分析 丨AI算法愈加復雜,但是機器視覺的開發門檻在降低

    機器視覺系統依賴于機器學習(machine learn)和深度學習(deep learn),尤其是深度學習的重要分支“卷積神經網絡”在圖像識別領域的應用,使機器
    的頭像 發表于 02-19 16:49 ?630次閱讀
    分析 丨AI<b class='flag-5'>算法</b>愈加復雜,但是機器<b class='flag-5'>視覺</b>的開發門檻在降低

    計算機視覺的十大算法

    隨著科技的不斷發展,計算機視覺領域也取得了長足的進步。本文將介紹計算機視覺領域的十大算法,包括它們的基本原理、應用場景和優缺點。這些算法在圖像處理、目標檢測、人臉識別等領域有著廣泛的應
    的頭像 發表于 02-19 13:26 ?1203次閱讀
    計算機<b class='flag-5'>視覺</b>的十大<b class='flag-5'>算法</b>

    基于Transformer的多模態BEV融合方案

    由于大量的相機和激光雷達特征以及注意力的二次性質,將 Transformer 架構簡單地應用于相機-激光雷達融合問題是很困難的。
    發表于 01-23 11:39 ?735次閱讀
    基于<b class='flag-5'>Transformer</b>的多模態BEV融合方案

    基于機器視覺和深度學習的焊接質量檢測系統

    的一致性和準確性。 ? 機器視覺技術為焊接質量檢測提供了高分辨率的圖像數據。通過搭載高速、高分辨率相機,系統能夠實時捕捉焊接過程中的細節,包括焊縫的形狀、尺寸和表面特征等。這些圖像數據為后續的深度學習
    的頭像 發表于 01-18 17:50 ?740次閱讀

    更深層的理解視覺Transformer, 對視覺Transformer的剖析

    最后是在ADE20K val上的LeaderBoard,通過榜單也可以看出,在榜單的前幾名中,Transformer結構依舊占據是當前的主力軍。
    的頭像 發表于 12-07 09:39 ?735次閱讀
    更深層的理解<b class='flag-5'>視覺</b><b class='flag-5'>Transformer</b>, 對<b class='flag-5'>視覺</b><b class='flag-5'>Transformer</b>的剖析

    基于transformer和自監督學習的路面異常檢測方法分享

    鋪設異常檢測可以幫助減少數據存儲、傳輸、標記和處理的壓力。本論文描述了一種基于Transformer和自監督學習的新方法,有助于定位異常區域。
    的頭像 發表于 12-06 14:57 ?1466次閱讀
    基于<b class='flag-5'>transformer</b>和自監督<b class='flag-5'>學習</b>的路面異常檢測方法分享

    SAFA:高效時空視頻超分辨率的尺度自適應特征聚合

    時空超分中,除了 I0.5{HR}, 我們還要得到 I0{HR}, I1{HR},如果把它們看成三次類似的推理,即 t=0, 0.5, 1 的情況各推理一次,這樣就和視頻插幀非常像了。對于升分辨率
    的頭像 發表于 11-29 16:31 ?734次閱讀
    SAFA:<b class='flag-5'>高效</b><b class='flag-5'>時空</b>視頻超分辨率的尺度自適應<b class='flag-5'>特征</b>聚合