這篇深入的文章介紹了Δ-Σ模數(shù)轉(zhuǎn)換器(ADC)背后的理論。它特別關(guān)注難以理解的過(guò)采樣、噪聲整形和抽取濾波等關(guān)鍵數(shù)字概念。包括三角積分轉(zhuǎn)換器的幾種應(yīng)用。
現(xiàn)代Σ-Δ轉(zhuǎn)換器具有高分辨率、高集成度、低功耗和低成本的特點(diǎn),使其成為過(guò)程控制、精密溫度測(cè)量和稱(chēng)重秤等應(yīng)用的良好ADC選擇。設(shè)計(jì)人員通常選擇經(jīng)典的SAR ADC,因?yàn)樗麄儾涣私猞?Δ類(lèi)型。
Σ-Δ轉(zhuǎn)換器(1位ADC)的模擬側(cè)非常簡(jiǎn)單。數(shù)字方面使得Σ-Δ型ADC的生產(chǎn)成本低廉,但更為復(fù)雜。它執(zhí)行濾波和抽取。要了解其工作原理,您必須熟悉過(guò)采樣、噪聲整形、數(shù)字濾波和抽取的概念。
本應(yīng)用筆記涵蓋了這些主題。
過(guò)采樣
首先,考慮具有正弦波輸入信號(hào)的傳統(tǒng)多位ADC的頻域傳遞函數(shù)。該輸入以頻率F采樣s.根據(jù)奈奎斯特理論,F(xiàn)s必須至少是輸入信號(hào)帶寬的兩倍。
當(dāng)觀(guān)察數(shù)字輸出的FFT分析結(jié)果時(shí),我們看到一個(gè)單一的音調(diào)和大量從DC延伸到F的隨機(jī)噪聲s/2(圖1)。這種效應(yīng)被稱(chēng)為量化噪聲,其影響源于以下考慮因素:ADC輸入是具有無(wú)限種可能狀態(tài)的連續(xù)信號(hào),但數(shù)字輸出是分立函數(shù),其不同狀態(tài)的數(shù)量由轉(zhuǎn)換器的分辨率決定。因此,從模擬到數(shù)字的轉(zhuǎn)換會(huì)丟失一些信息,并在信號(hào)中引入一些失真。此錯(cuò)誤的大小是隨機(jī)的,值高達(dá) ±LSB。
圖1.采樣頻率為F的多位ADC的FFT圖S.
如果我們將基波幅度除以代表噪聲的所有頻率的RMS總和,則得到信噪比(SNR)。對(duì)于N位ADC,SNR = 6.02N + 1.76dB。為了提高傳統(tǒng)ADC的SNR(從而提高信號(hào)再現(xiàn)的精度),必須增加位數(shù)。
再次考慮上面的例子,但采樣頻率增加了過(guò)采樣比k,到kFs(圖2)。FFT分析顯示本底噪聲已經(jīng)下降。信噪比與以前相同,但噪聲能量已分布在更寬的頻率范圍內(nèi)。Σ-Δ轉(zhuǎn)換器利用這種效應(yīng),在1位ADC之后加上數(shù)字濾波器(圖3)。RMS噪聲較小,因?yàn)榇蟛糠衷肼曂ㄟ^(guò)數(shù)字濾波器。該動(dòng)作使Σ-Δ轉(zhuǎn)換器能夠從低分辨率ADC實(shí)現(xiàn)寬動(dòng)態(tài)范圍。
圖2.采樣頻率為kF的多位ADC的FFT圖S.
圖3.數(shù)字濾波器對(duì)噪聲帶寬的影響。
信噪比的改善是否僅僅來(lái)自過(guò)采樣和濾波?請(qǐng)注意,1位ADC的SNR為7.78dB(6.02 + 1.76)。每增加4倍的過(guò)采樣會(huì)使SNR增加6dB,每增加6dB相當(dāng)于獲得一位。具有 1 倍過(guò)采樣的 24 位 ADC 可實(shí)現(xiàn) 16 位的分辨率,要實(shí)現(xiàn) 4 位分辨率,過(guò)采樣必須為 <> 倍15,這是無(wú)法實(shí)現(xiàn)的。但是,Σ-Δ轉(zhuǎn)換器通過(guò)噪聲整形技術(shù)克服了這一限制,對(duì)于6倍過(guò)采樣的每個(gè)因子,其增益超過(guò)4dB。
噪聲整形
要了解噪聲整形,請(qǐng)考慮一階Σ-Δ調(diào)制器的框圖(圖4)。它包括一個(gè)差動(dòng)放大器、一個(gè)積分器和一個(gè)帶反饋環(huán)路的比較器,其中包含一個(gè)1位DAC。(該DAC只是一個(gè)開(kāi)關(guān),將差動(dòng)放大器的負(fù)輸入連接到正或負(fù)基準(zhǔn)電壓。反饋DAC的目的是將積分器的平均輸出保持在比較器的基準(zhǔn)電平附近。
圖4.Σ-Δ調(diào)制器框圖。
調(diào)制器輸出端的“一”密度與輸入信號(hào)成正比。對(duì)于增加的輸入,比較器產(chǎn)生更多的“一”,反之亦然,對(duì)于減少的輸入。通過(guò)對(duì)誤差電壓求和,積分器充當(dāng)輸入信號(hào)的低通濾波器和量化噪聲的高通濾波器。因此,大多數(shù)量化噪聲被推入更高的頻率(圖 5)。過(guò)采樣改變的不是總噪聲功率,而是其分布。
圖5.積分器對(duì)Σ-Δ調(diào)制器的影響。
如果對(duì)噪聲形狀的Δ-Σ調(diào)制器應(yīng)用數(shù)字濾波器,它比簡(jiǎn)單的過(guò)采樣去除更多的噪聲(圖6)。這種類(lèi)型的調(diào)制器(一階調(diào)制器)使采樣速率每增加一倍,SNR就會(huì)提高9dB。對(duì)于更高階的量化,我們可以通過(guò)在Σ-Δ調(diào)制器中包含多個(gè)積分和求和級(jí)來(lái)實(shí)現(xiàn)噪聲整形。例如,圖7所示的二階Σ-Δ調(diào)制器使采樣速率每增加一倍,SNR就會(huì)提高15dB。圖8顯示了Σ-Δ調(diào)制器的階數(shù)與實(shí)現(xiàn)特定SNR所需的過(guò)采樣量之間的關(guān)系。
圖6.數(shù)字濾波器對(duì)成形噪聲的影響。
圖7.使用多個(gè)積分器和求和級(jí)來(lái)實(shí)現(xiàn)更高階的量化噪聲。
圖8.Σ-Δ調(diào)制器的階數(shù)與實(shí)現(xiàn)特定SNR所需的過(guò)采樣量之間的關(guān)系。
數(shù)字和抽取濾波器
Σ-Δ調(diào)制器的輸出是采樣速率的1位數(shù)據(jù)流,可以在兆赫茲范圍內(nèi)。數(shù)字抽取濾波器(圖9)的目的是從該數(shù)據(jù)流中提取信息,并將數(shù)據(jù)速率降低到更有用的值。在Σ-Δ型ADC中,數(shù)字濾波器對(duì)1位數(shù)據(jù)流進(jìn)行平均,提高ADC分辨率,并消除目標(biāo)頻帶外的量化噪聲。它決定了信號(hào)帶寬、建立時(shí)間和阻帶抑制。
圖9.Σ-Δ調(diào)制器的數(shù)字端。
在Σ-Δ轉(zhuǎn)換器中,執(zhí)行低通功能的廣泛使用的濾波器拓?fù)涫荢inc3型(圖10)。該濾波器的主要優(yōu)點(diǎn)是其陷波響應(yīng),例如,當(dāng)設(shè)置為該頻率時(shí),它可以抑制線(xiàn)路頻率。陷波位置與輸出數(shù)據(jù)速率(1/數(shù)據(jù)字周期)直接相關(guān)。SINC3 篩選器以三個(gè)數(shù)據(jù)字周期建立。對(duì)于60Hz陷波(60Hz數(shù)據(jù)速率),建立時(shí)間為3/60Hz = 50ms。對(duì)于要求較低分辨率和較快建立時(shí)間的應(yīng)用,請(qǐng)考慮MAX1400系列ADC,它允許您選擇濾波器類(lèi)型(SINC1或SINC3)。
圖 10.由Sinc3濾波器執(zhí)行的低通功能。
SINC1濾波器的建立時(shí)間為一個(gè)數(shù)據(jù)字。如上例所示,1/60Hz = 16.7ms。由于數(shù)字輸出濾波器降低了帶寬,因此即使輸出數(shù)據(jù)速率低于原始采樣速率,輸出數(shù)據(jù)速率也可以滿(mǎn)足奈奎斯特準(zhǔn)則。這可以通過(guò)保留某些輸入樣本并丟棄其余樣本來(lái)實(shí)現(xiàn)。此過(guò)程稱(chēng)為 M 系數(shù)(抽取比)的抽取。M可以具有任何整數(shù)值,前提是輸出數(shù)據(jù)速率是信號(hào)帶寬的兩倍以上(圖11)。如果輸入已在 f 處采樣s,濾波輸出數(shù)據(jù)速率因此可以降低到fs/M 而不會(huì)丟失信息。
圖 11.抽取不會(huì)導(dǎo)致任何信息丟失。
Maxim的Σ-Δ型ADC
最近高度集成的Σ-Δ型ADC只需極少的外部元件即可管理小信號(hào)。例如,MAX1402芯片包含的功能非常多,因此被認(rèn)為是片上系統(tǒng)(圖12)。該器件在工作模式下消耗 250μA 的低靜態(tài)電流 (省電模式下為 2μA),在 16sps 時(shí)提供 480 位精度,在 12sps 時(shí)提供 4800 位精度。
圖 12.MAX1402原理框圖
MAX1402信號(hào)鏈包括:一個(gè)靈活的輸入多路復(fù)用器,可設(shè)置為管理三個(gè)全差分信號(hào)或五個(gè)偽差分信號(hào),兩個(gè)斬波放大器,一個(gè)可編程PGA(增益范圍為1至128),一個(gè)用于消除系統(tǒng)失調(diào)的粗DAC,以及一個(gè)二階Σ-Δ調(diào)制器。然后使用可配置為 SINC1 或 SINC3 的集成數(shù)字濾波器對(duì) 1 位數(shù)據(jù)流進(jìn)行濾波。轉(zhuǎn)換結(jié)果通過(guò) SPI/QSPI 提供?兼容的3線(xiàn)串行接口。
該芯片還包括兩個(gè)用于校準(zhǔn)失調(diào)和增益的全差分輸入通道、兩個(gè)匹配的200μA傳感器激勵(lì)電流(適用于3線(xiàn)和4線(xiàn)RTD應(yīng)用)和兩個(gè)“燒壞”電流,用于測(cè)試所選傳感器的完整性。該器件通過(guò)串行接口進(jìn)行編程,以訪(fǎng)問(wèn)選擇工作模式的八個(gè)內(nèi)部寄存器。設(shè)置 SCAN 控制位使芯片能夠按需或連續(xù)讀取輸入通道,并且輸入通道由附加到每個(gè)轉(zhuǎn)換結(jié)果的 3 位“通道標(biāo)識(shí)”標(biāo)識(shí)進(jìn)行識(shí)別。
圖13建立了正確的輸入電壓范圍,該范圍由U/B-bar位、Vref、PGA和DAC設(shè)置定義。當(dāng)DAC代碼等于“0000”時(shí),不執(zhí)行偏移操作。例如,當(dāng)Vref = 2.5V時(shí),通過(guò)將DAC設(shè)置為“0”,將PGA設(shè)置為“5”,將U/B-bar位設(shè)置為“1110”,可以適應(yīng)000V至0V的滿(mǎn)量程。
圖 13.MAX1402輸入電壓范圍設(shè)置。
兩個(gè)校準(zhǔn)通道(CALOFF和CALGAIN)可用于校正測(cè)量。為此,CALOFF 輸入接地,CALGAIN 輸入連接到基準(zhǔn)電壓。在這些通道上執(zhí)行的平均測(cè)量用于以下插值公式:電壓 = [Vref ×(代碼-卡洛夫代碼)]/[(卡爾增益代碼-卡洛夫代碼)×PGA 增益]。
Σ-Δ型ADC的應(yīng)用
帶冷端補(bǔ)償?shù)臒犭娕紲y(cè)量
為了消除熱電偶引線(xiàn)的噪聲拾取,本應(yīng)用中的MAX1402(圖14)使用緩沖模式,允許前端使用較大的去耦電容。由于該模式下可用的共模范圍減小,因此有必要將AIN2輸入偏置在基準(zhǔn)電壓(2.5V)。熱電偶測(cè)量存在熱電勢(shì)問(wèn)題,通過(guò)將熱電偶探頭連接到測(cè)量?jī)x器而產(chǎn)生。這種電位引入了與溫度相關(guān)的誤差,必須從溫度測(cè)量中減去該誤差才能獲得準(zhǔn)確的結(jié)果。
圖 14.帶冷端補(bǔ)償?shù)臒犭娕紲y(cè)量。
儀器測(cè)量的電壓可以用α(T1-Tref)表示,其中α是熱電偶的塞貝克常數(shù),T1是被測(cè)溫度,Tref是接線(xiàn)盒的溫度。為了補(bǔ)償塞貝克系數(shù),您可以添加(到熱電偶輸出)由二極管產(chǎn)生的溫度相關(guān)電壓的一部分,或者您可以獲取接線(xiàn)盒溫度并使用軟件計(jì)算補(bǔ)償。在這種布置中,pn結(jié)溫由差分輸入通道AIN3-AIN4測(cè)量,由200μA內(nèi)部電流發(fā)生器偏置。
精密熱電偶數(shù)據(jù)采集系統(tǒng) (DAS)
作為MAX1402的替代產(chǎn)品,MAX11200/MAX11210提供24位分辨率,支持高性能、高要求的應(yīng)用。圖15是一個(gè)簡(jiǎn)化的原理圖,顯示了使用24位Δ-Σ型ADC MAX11200評(píng)估(EV)板的精密DAS,允許熱電偶溫度測(cè)量。這里,R1 - PT1000(PTS 1206,1000Ω)用于冷端的絕對(duì)溫度測(cè)量。該解決方案允許以±0.30°C或更高的精度測(cè)量冷端溫度。1
圖 15.簡(jiǎn)化的熱電偶 DAS。
MAX11200的GPIO控制精密多路復(fù)用器MAX4782,可選擇熱電偶或PRTD R1 - PT1000。這種方法允許使用單個(gè)ADC進(jìn)行動(dòng)態(tài)熱電偶或PRTD測(cè)量。該設(shè)計(jì)提高了系統(tǒng)精度并降低了校準(zhǔn)要求。
3 線(xiàn)和 4 線(xiàn) RTD 配置
過(guò)程控制中要求苛刻的溫度測(cè)量有利于鉑電阻溫度檢測(cè)器(RTD),因?yàn)樗鼈兙哂谐錾木群突Q性。鉑 PRTD100 在 100°C 時(shí)產(chǎn)生 0Ω 的電流,在 +200°C 時(shí)產(chǎn)生 266Ω 的電阻。 RTD的靈敏度非常低(ΔR/ΔT = 100Ω/266°C),施加的200μA激勵(lì)電流在20°C時(shí)產(chǎn)生0mV,在+40°C時(shí)產(chǎn)生266mV。 這些信號(hào)電平可由MAX1402的模擬輸入直接處理。
測(cè)量精度可能會(huì)受到接線(xiàn)電阻引起的誤差的影響。當(dāng)RTD位于轉(zhuǎn)換器附近時(shí),可以使用傳統(tǒng)的2線(xiàn)配置,但是當(dāng)RTD位于較遠(yuǎn)的位置時(shí),接線(xiàn)電阻可能會(huì)增加RTD阻抗,從而導(dǎo)致顯著誤差。這些類(lèi)型的安裝應(yīng)使用三線(xiàn)和四線(xiàn)RTD配置。
兩個(gè)匹配的 200μA 電流源能夠補(bǔ)償 3 線(xiàn)和 4 線(xiàn) RTD 配置中的誤差。在 3 線(xiàn)情況下(圖 16),這些流入 RL1 和 RL2 的電流源可確保 AIN1-AIN2 處的差分電壓不受引線(xiàn)電阻的影響。如果兩根引線(xiàn)的材料相同且長(zhǎng)度相等(RL1 = RL2),并且電流源具有精細(xì)匹配的溫度系數(shù)(MAX1402溫度系數(shù)為5ppm/°C),則情況確實(shí)如此。
圖 16.3線(xiàn)RTD應(yīng)用。
4 線(xiàn)配置沒(méi)有引線(xiàn)電阻誤差,因?yàn)檫B接到 AIN1 和 AIN2 的測(cè)量引線(xiàn)中沒(méi)有電流流動(dòng)(圖 17)。電流源 OUT1 為 RTD 提供激勵(lì)電流,電流源 OUT2 提供電流以產(chǎn)生基準(zhǔn)電壓。比率式配置可確保 RTD 溫度系數(shù)誤差(由于 RTD 電流源中的溫度漂移)通過(guò)基準(zhǔn)電壓的變化進(jìn)行補(bǔ)償。
圖 17.4線(xiàn)RTD應(yīng)用。
用于鉑電阻溫度檢測(cè)器(PRTD)的高精度溫度數(shù)據(jù)采集系統(tǒng)
使用MAX11200的DAS提供非常精確的PRTD測(cè)量系統(tǒng),可用于在很寬的溫度范圍內(nèi)支持不同電阻的RTD。常見(jiàn)的PRTD電阻為100Ω(PRTD100)、500Ω(PRTD500)和1000Ω(PRTD1000)。表 1 顯示了 PRTD100 和 PRTD1000 器件的差分電壓輸出范圍。右邊的一組方程計(jì)算MAX11200 ADC產(chǎn)生多少個(gè)無(wú)噪聲代碼。
TC(°C) | V室溫(毫伏) | V室溫(毫伏) |
無(wú)噪聲代碼 = (V.MAX- 五最低)/折合到輸入端的噪聲 無(wú)噪聲 代碼 = 82.46mV/2.86μVP-P 無(wú)噪聲代碼 = 28,822 個(gè)代碼 溫度 = 210°C/28.82K 溫度 = 0.007°C |
PRTD100 | PRTD1000 | ||
-55 | 28.4 | 84.6 | |
0 | 36.1 | 107.1 | |
20 | 38.9 | 115.2 | |
155 | 57.1 | 167.0 | |
210 | 28.75 | 82.46 |
請(qǐng)注意,PRTD應(yīng)用中的輸出信號(hào)總范圍約為82mV。MAX11200在570sps時(shí)具有10nV的極低輸入?yún)⒖荚肼暎?°C范圍內(nèi)具有007.210°C的無(wú)噪聲分辨率。
圖 18.本文中用于測(cè)量的精密數(shù)據(jù)采集系統(tǒng)(DAS)框圖。DAS基于MAX11200 ADC(圖3),提供簡(jiǎn)單校準(zhǔn)和計(jì)算機(jī)生成的線(xiàn)性化功能。
如圖18所示,MAX11200的GPIO1引腳設(shè)置為輸出,用于控制繼電器校準(zhǔn)開(kāi)關(guān),該開(kāi)關(guān)選擇固定的R。卡爾電阻器或 PRTD。這種多功能性提高了系統(tǒng)精度,并將所需的計(jì)算減少到R初始值的計(jì)算一個(gè)和 RT.1
在老式的4-20mA變送器中,現(xiàn)場(chǎng)安裝的設(shè)備感測(cè)壓力或溫度等物理參數(shù),并產(chǎn)生(在標(biāo)準(zhǔn)4-20mA范圍內(nèi))與測(cè)量變量成比例的電流。電流環(huán)路具有以下優(yōu)點(diǎn):測(cè)量信號(hào)對(duì)噪聲不敏感,電源可以從遠(yuǎn)程供電的電壓中獲得。為了響應(yīng)行業(yè)需求,開(kāi)發(fā)了第二代4-20mA變送器(稱(chēng)為“智能”變送器),以使用微處理器和數(shù)據(jù)轉(zhuǎn)換器遠(yuǎn)程調(diào)理信號(hào)。
智能設(shè)備可以歸一化增益和失調(diào),并通過(guò)轉(zhuǎn)換為數(shù)字、使用 μP 中的算術(shù)算法進(jìn)行處理、轉(zhuǎn)換回模擬以及通過(guò)環(huán)路傳輸標(biāo)準(zhǔn)電流來(lái)線(xiàn)性化 RTD 和熱電偶等傳感器(圖 19)。第三代“智能智能”4-20mA發(fā)送器增加了(智能設(shè)備)數(shù)字通信,與4-20mA信號(hào)共享雙絞線(xiàn)。該通信通道還允許傳輸控制和診斷信號(hào)。MAX1402等低功耗器件是合適的選擇,因?yàn)槠?50μA電源電流可為其余發(fā)送器電路節(jié)省大量功耗。
圖 19.智能4-20mA變送器。
智能變送器的通信標(biāo)準(zhǔn)是HART協(xié)議。基于貝爾202電話(huà)通信標(biāo)準(zhǔn),HART采用頻移鍵控(FSK)原理。數(shù)字信號(hào)由代表 1 和 0 的兩個(gè)頻率(1200Hz 和 2200Hz)組成。為了同時(shí)提供模擬和數(shù)字通信,這些頻率的正弦波疊加在直流模擬信號(hào)電纜上(圖 20)。由于FSK信號(hào)的平均值始終為零,因此不會(huì)影響4-20mA模擬信號(hào)。數(shù)字通信信號(hào)的響應(yīng)時(shí)間允許每秒大約2-3次數(shù)據(jù)更新,而不會(huì)中斷模擬信號(hào)。通信所需的最小環(huán)路阻抗為23Ω。
圖 20.同步模擬和數(shù)字通信。
總結(jié)
在高度集成的調(diào)理系統(tǒng)出現(xiàn)之前,過(guò)程控制是使用多個(gè)獨(dú)立的芯片來(lái)實(shí)現(xiàn)的,用于信號(hào)調(diào)理和處理。作為替代方案,Σ-Δ方法可滿(mǎn)足最苛刻應(yīng)用的性能要求,同時(shí)最大限度地降低電路板空間和電源要求(許多應(yīng)用只需要一個(gè)3V或5V電源)。單電源供電特別適用于電池供電的便攜式系統(tǒng),元件更少,提高了系統(tǒng)可靠性。
審核編輯:郭婷
-
轉(zhuǎn)換器
+關(guān)注
關(guān)注
27文章
8639瀏覽量
146889 -
adc
+關(guān)注
關(guān)注
98文章
6452瀏覽量
544142 -
模數(shù)轉(zhuǎn)換器
+關(guān)注
關(guān)注
26文章
3144瀏覽量
126747
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論