今天為大家帶來傳感器與PLC的接線方法,二十張接線圖,是不是超豐厚? 快一起來看吧!
一、概述
PLC 的數字量輸入接口并不復雜,PLC 為了提高抗干擾能力,輸入接口都采用光電耦合器來隔離輸入信號與內部處理電路的傳輸。 因此,輸入端的信號只是驅動光電耦合器的內部 LED 導通,被光電耦合器的光電管接收,即可使外部輸入信號可靠傳輸。
目前 PLC 數字量輸入端口一般分單端共點與雙端輸入,由于有區別,用戶在選配外部傳感器時接法上需要一定的區分與了解才能正確使用傳感器與 PLC 為后期的編程工作和系統穩定奠定基礎。
二、輸入電路的形式
1輸入類型的分類
PLC的數字量輸入端子,按電源分直流與交流,按輸入接口分類由單端共點輸入與雙端輸入,單端共點接電源正極為SINK(sink Current 拉電流),單端共點接電源負極為SRCE(source Current 灌電流)。
2詞語的概述
SINK漏型為電流從輸入端流出,那么輸入端與電源負極相連即可,說明接口內部的光電耦合器為單端共點為電源正極,可接NPN型傳感器。
SOURCE源型為電流從輸入端流進,那么輸入端與電源正極相連即可,說明接口內部的光電耦合器為單端共點為電源負極,可接PNP型傳感器。
接近開關與光電開關三、四線輸出分 NPN 與 PNP 輸出,對于無檢測信號時 NPN 的接近開關與光電開關輸出為高電平(對內部有上拉電阻而言),當有檢測信號,內部NPN 管導通,開關輸出為低電平。
對于無檢測信號時 PNP 的接近開關與光電開關輸出為低電平(對內部有下拉電阻而言),當有檢測信號,內部 PNP 管導通,開關輸出為高電平。
以上的情況只是針對,傳感器是屬于常開的狀態下。
3按電源配置類型
(1) 直流輸入電路
如圖1,直流輸入電路要求外部輸入信號的元件為無源的干接點或直流有源的無觸點開關接點,當外部輸入元件與電源正極導通,電流通過R1,光電耦合器內部LED,VD1(接口指示)到COM端形成回路,光電耦合器內部接收管接受外部元件導通的信號,傳輸到內部處理; 這種由直流電提供電源的接口方式,叫直流輸入電路;
直流電可以由PLC內部提供也可以外接直流電源提供給外部輸入信號的元件。 R2在電路中的作用是旁路光電耦合器內部LED的電流,保證光電耦合器LED不被兩線制接近開關的靜態泄漏電流導通。
(2) 交流輸入電路
如圖2,交流輸入電路要求外部輸入信號的元件為無源的干接點或交流有源的無觸點開關接點,它與直流接口的區分在光電耦合器前加一級降壓電路與橋整流電路。 外部元件與交流電接通后,電流通過R1,C2經過橋整流,變成降壓后的直流電,后續電路的原理與直流的一致。
交流PLC主要適用相對環境惡劣,布線技改變動不大等場合; 如接近開關就用交流兩線直接替代原來行程開關。
4按端口類型
(1)單端共點(Comcon)數字量輸入方式
為了節省輸入端子,單端共點輸入的結構是在 PLC 內部將所有輸入電路(光電耦合器)的一端連接在一起接到標示為 COM 的內部公共端子,各輸入電路的另一端才接到其對應的輸入端子 X0、X1、X2、....
com 共點與 N 個單端輸入就可以做 N 個數字量的輸入(N+1 個端子),因此我們稱此結構為"單端共點"輸入。 用戶在做外部數字量輸入組件的接線時也需要同樣的做法,需要將所有輸入組件的一端連接在一起,叫輸入組件的的外部共線; 輸入組件的另一端才接到 PLC 的輸入端子 X0、X1、X2、....
SINK輸入方式,可接 NPN 型傳感器,即 X 端口與負極相連。
SRCE輸入方式,可接 PNP 型傳感器。 即 X 端口與整機極相連。 (外部輸入組件可以為按鈕開關、行程開關、舌簧開關、霍爾開關、接近開關、光電開關、光幕傳感器、繼電器觸點、接觸器觸電等開關量的元件。 )
(2) SINK(sink Current 拉電流)輸入方式
單端共點SINK輸入接線(內部共點端子COM→24V+,外部共線→24V-)。 如圖3:
(3) SRCE(source Current 灌電流)輸入方式
單端共點SRCE輸入接線(內部共點端子COM→24V-,外部共線→24V+)。 如圖4:
(4)SINK/SRCE可切換輸入方式
S/S端子與COM端不同的是,COM是與內部電源正極或負極固定相連,S/S端子是非固定相連的,根據需要才與內部電源或外部電源的正極或者負極相連。
單端共點SINK輸入接線(內部共點端子S/S→24V+,外部共線→24V-)。
單端共點SRCE輸入接線(內部共點端子S/S→24V-,外部共線→24V+)。
(5) 當有源輸入元件(霍爾開關、接近開關、光電開關、光幕傳感器等)數量比較多,消耗功率比較大,PLC內置電源不能滿足時,需要配置外置電源。 根據需求可以配24VDC,一定功率的開關電源。 外置電源原則上不能與內置電源并聯,根據COM與外部共線的特點, SINK(sink Current 拉電流)輸入方式時,外置電源與內置電源正極相連接; SRCE(source Current 灌電流)輸入方式時,外置電源與內置電源負極相連接。
(6) 簡單判斷SINK(sink Current 拉電流)輸入方式,只需要Xn端與負極短路,如果接口指示燈亮就說明是SINK輸入方式。 共正極的光藕合器,可接NPN型的傳感器。 SRCE(source Current 灌電流)輸入方式,將Xn端與正極短路,如果接口指示燈亮就說明是SRCE輸入方式。 共負極的光藕合器,可接PNP型的傳感器。
(7) 對于2線式的開關量輸入,如果是無源觸點,SINK與SRCE按上圖的輸入元件接法,對于2線式的接近開關,需要判斷接近開關的極性,正確接入。
(8)超高速雙端輸入電路
主要用于硬件高速計數器(HHSC)的輸入使用,接口電壓為5VDC,在應用上為確保高速及高噪音抗性通常采用雙線驅動方式(Line-Drive)。 如果工作頻率不高與噪音低也可以采用5VDC的單端SINK或者SRCE接法,串聯一個限流電阻轉換成24VDC的單端SINK或者SRCE接法。
(9)雙輸入端雙線驅動方式(Line-Drive)
(10)、5VDC的單端SINK或者SRCE接法
(11)、24VDC的單端SINK或者SRCE接法
注:24VDC供電的傳感器,在輸入回路上需要串聯限流電阻,R1為10Ω,R2為2KΩ,不串聯限流電阻,將燒毀接口回路,限流電阻取值2.7KΩ。
三、外部輸入元件
1、無源干接點(按鈕開關、行程開關、舌簧磁性開關、繼電器觸點等)
無源干接點比較簡單,接線容易。 不存在電源的極性,壓降等因素,上圖3-6中的輸入元件正是此類型。 這里不重復介紹。
2、有源兩線制傳感器(接近開關、有源舌簧磁性開關)
有源兩線接近開關分直流與交流,此傳感器的特點就是兩根線,傳器輸出端導通后,為了保證電路正常工作需要一個保持電壓來維持電路工作,通常在3.5-5V的壓降,靜態泄露電流要小于1mA,這個指標很重要;如果過大,在接近開關沒檢測信號時,就使PLC的輸入端的光電耦合器導通。
直流兩線制接近開關分二極管極性保護與橋整流極性保護,前者在接PLC時需要注意極性,后者就不需要注意極性。 有源舌簧磁性開關主要用在汽缸上做位置檢測,由于需要信號指示,內部有雙向二極管回路,因此也不需要注意極性; 交流兩線制接近開關就不需要注意極性。 如圖10:
(1) 單端共點SINK輸入接線(內部共點端子COM→24V+,外部共線→24V-)。 如圖11:
(2) 單端共點SRCE輸入接線(內部共點端子COM→24V-,外部共線→24V+)。 如圖12:
(3)S/S端子接法參考圖5-圖6以及圖11-圖12。
3、有源三線傳感器(電感接近開關、電容接近開關、霍爾接近開關、光電開關等)直流有源三制線接近開關與光電開關輸出管使用三極管輸出,因此傳感器分NPN和PNP輸出,有的產品是四線制,有雙NPN或雙PNP,只是狀態剛好相反,也有NPN和PNP結合的四線輸出。
NPN型當傳感器有檢測信號VT導通,輸出端OUT的電流流向負極,輸出端OUT電位接近負極,通常說的高電平翻轉成低電平。
PNP型當傳感器有檢測信號VT導通,正極的電流流向輸出端OUT,輸出端OUT電位接近正極,通常說的低電平翻轉成高電平。
電路中三極管的發射極上的電阻為短路保護采樣電阻2-3Ω不影響輸出電流。 三極管的集電極的電阻為上拉與下拉電阻,提供輸出電位,方便電平接口的電路,另一種輸出的三極管集電極開路輸出不接上拉與下拉電阻。
簡單說當三極管VT導通,相當于一個接點導通,如圖13:
(1) 單端共點SINK輸入接線(內部共點端子COM→24V+,外部共線→24V-)。 如圖14:
(2) 單端共點SRCE輸入接線(內部共點端子COM→24V-,外部共線→24V+)。 如圖15:
(3) S/S端子接法參考圖5-圖6、圖11-圖12以及圖14-圖15。
PLC輸入接口電路形式和外接元件(傳感器)輸出信號形式的多樣性,因此在PLC輸入模塊接線前必要了解PLC輸入電路形式和傳感器輸出信號的形式,才能確保PLC輸入模塊接線正確無誤,在實際應用中才能游刃有余,后期的編程工作和系統穩定奠定基礎。
審核編輯:湯梓紅
-
傳感器
+關注
關注
2548文章
50668瀏覽量
751981 -
plc
+關注
關注
5008文章
13150瀏覽量
462059 -
接線
+關注
關注
29文章
703瀏覽量
33104 -
耦合器
+關注
關注
8文章
718瀏覽量
59635 -
輸入電路
+關注
關注
2文章
35瀏覽量
10699
原文標題:20張PLC與傳感器接線圖,PLC入門必看~
文章出處:【微信號:robotqy,微信公眾號:機械自動化前沿】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論