精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

具有高電流能力且不可燃的質子有機電解質用于鋅電池

鋰電聯盟會長 ? 來源:新威NEWARE ? 2023-04-17 09:55 ? 次閱讀

01

導讀

可充電鋅電池(RZBs)具有多種優勢被認為是下一代電化學設備的有力競爭者。然而,由于水性體系中復雜的反應動力學,傳統的水性電解質可能通過快速容量衰減和差的庫侖效率(CE)對長期電池循環造成嚴重危害。

02

成果簡介

該工作提出了采用質子酰胺溶劑N-甲基甲酰胺(NMF)作為鋅電池電解質的新方法,其具有高介電常數和高閃點,同時促進快速動力學和電池安全性。在N-甲基甲酰胺(NMF)與三鋅氟酸鹽結合的(Zn-NMF)電解質中無枝晶和粒狀鋅沉積確保了在2.0 mA cm-2/2.0 mAh cm-2下2000 h的超長壽命、99.57 %的高CE、寬電化學窗口(3.43 V vs Zn2+/Zn)和高達10.0 mAh cm-2的容量。這項工作揭示了質子非水電解質的高效性能,這將為促進安全和高能量密度的RZBs提供新的機會。

03

關鍵創新

(1)作者首次將N-甲基甲酰胺(NMF)作為鋅電池的電解質;

(2)使用Zn-NMF的鋅電池實現了超長的循環壽命(2000 h,2.0 mA cm-2/2.0 mAh cm-2)、高面積容量(10.0 mAh cm-2)、高庫倫效率(99.57 %)和寬電壓窗口(3.43 V vs Zn2+/Zn)。

04

核心內容解讀

ea25fd10-dcc0-11ed-bfe3-dac502259ad0.png

1 a-b)Zn||SS在Zn-NMF和水溶液(含Zn(OTf)2和硫酸鋅鹽)電解質中不對稱電池組裝得到的LSV曲線。在c)水溶液和d) Zn-NMF電解質的電流密度下,Zn||Zn對稱電池在電流放電時的照片。e-f)有(左)和無(右)火源的NMF溶劑的易燃性試驗。g)在不同電流密度下,在Zn-NMF電解質中循環的Zn||Zn對稱電池的恒電流放電曲線。

Zn||SS(不銹鋼)不對稱電池的線性掃描伏安法(LSV),測定NMF溶劑和Zn-NMF電解質對鋅金屬電極的穩定性的影響。氧化過程中Zn-NMF電解質的分解受到了顯著的抑制。循環過程中的光學圖像表明,Zn-NMF電解質中沒有H2的演化。此外,在圖1e-f中還提供了對Zn-NMF電解質的火焰測試,顯示了其不易燃的性質。

ea30e0ae-dcc0-11ed-bfe3-dac502259ad0.png

2 a-b)恒電流充放電曲線和c)Zn||Zn對稱電池在不同電流密度下在Zn-NMF電解質中循環的倍率性能。

為了研究鋅電極在Zn-NMF電解質中的電化學性能,作者進行了鋅||鋅對稱電池的恒流充放電曲線測試。在高電流密度為3.0 mA cm-2和5.0 mA cm-2時,Zn-NMF電解質的鋅||鋅對稱電池循環壽命分別為400 h和100 h。此外,在0.25~5.0 mA cm-2電流范圍內,作者通過對稱電池的倍率性能測試,比較了Zn-NMF和水溶液的穩定性。Zn-NMF的鋅陽極穩定性更好。

ea3aee5a-dcc0-11ed-bfe3-dac502259ad0.png

3在電流密度為a-b) 0.5和c-d) 1.0 mA cm-2的情況下進行深度電鍍/剝離,面積容量分別為5.0和10.0 mAh cm-2。

作者采用深度電鍍/剝離條件,確定了鋅金屬電極在高面積容量下與Zn-NMF電解質的相容性。在電流密度為0.5 mA cm-2/5.0 mAcm-2(圖3a-b)和1.0 mA cm-2/10.0 mAcm-2(圖3c-d)時,對稱電池分別表現出~2000 h和1800 h的穩定循環,具有極低的過電位(~40 mV),沒有任何電壓滯后。

ea42ddae-dcc0-11ed-bfe3-dac502259ad0.png

4Zn-NMF與水電解質的a) CE比較。在b-d) Zn-NMF電解質和e-g)水電解質中循環后的鋅電極的掃描電鏡分析。兩種電解質中鋅陽極循環的h) XRD和i) XPS比較。

此外,作者通過不對稱電池組裝,測定了水和非水電解質中鋅電鍍/剝離的CE。鋅在0.5 mA cm-2/0.5 mAh cm-2的條件下沉積在Ti電極上,然后以0.5 V的截止電壓以電位控制的方式剝離。大約750個循環后,Zn-NMF電解液的高CE(~99.58%)表明鋅陽極與Zn-NMF電解液具有較高的界面穩定性和非反應性。相反,在水電解質中,極低的CE(~68.69%)和較低的循環壽命表明水基體系中由于不可逆副產物的形成導致鋅陽極不穩定和活性質量損失。作者通過掃描電鏡對Zn-NMF電解質中沉積的鋅進行了形態學測試,結果表明鋅的致密、均勻和無枝晶沉積。

ea52359c-dcc0-11ed-bfe3-dac502259ad0.png

5 a)CV曲線,b)Zn||NMO全電池周期比較Zn-NMFMn-NMF電解質,c) Mn-NMF電解質的倍率性能,d)比較Mn-NMF和2 M ZnSO4+0.1 MnSO4(水)電解質的恒電流循環和e) Mn-NMF電解質在0.5 A g-1下長期的電池循環。

作者通過Zn||NMO全電池組裝,研究了在Zn-NMF電解液中的電極性能。Zn2+離子(脫)嵌入是一種可逆的氧化還原過程,在整個CV循環過程中重疊,顯示出Zn-NMF電解質中NMO電極的良好可逆性。在電流密度為0.1 A g-1時的Zn-NMF電解質中,Zn||NMO電池的恒流充放電曲線表明,在最初的活化過程中,最大比容量達到~112 mAh g-1。作者在Zn-NMF電解液中加入Mn2+鹽(0.1 M氯化錳),以抑制活性物質的溶解。Zn-NMF+0.1 M氯化錳(Mn-NMF)電解質的穩定循環,比容量為110 mAh g-1,1000次循環后,容量保留率為98.2%。此外,在0.5 A g-1的高電流倍率下,Mn-NMF電解質中Zn||NMO的長期充放電試驗顯示出1000次循環的良好的循環穩定性,在第29個循環中,活化過程中的比容量從35.2增加到70.5 mAh g-1。此外,1000個循環后,容量保留為~94.4%,高CE為99.9%。

05

成果啟示

該工作使用了一種新型電解質Zn-NMF。Zn||Zn對稱電池在電流密度為0.5-2.0 mA cm-2的范圍內進行了2000 h的超穩定循環。此外,實現了高效可逆的沉積(~99.57%),更寬的電化學窗口(~3.43 V vs Zn2+/Zn)和更大的面積容量(10.0 mAh cm-2)。該工作為設計高效的鋅電池提供了新的策略和啟發。






審核編輯:劉清

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 鋅電池
    +關注

    關注

    0

    文章

    36

    瀏覽量

    7797
  • 電解質
    +關注

    關注

    6

    文章

    805

    瀏覽量

    20019

原文標題:Angew:具有高電流能力且不可燃的質子有機電解質用于鋅電池

文章出處:【微信號:Recycle-Li-Battery,微信公眾號:鋰電聯盟會長】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    固態電池中復合鋰陽極上固體電解質界面的調控

    采用固體聚合物電解質(SPE)的固態鋰金屬電池(SSLMB)具有更高的安全性和能量密度,在下一代儲能領域具有很大的應用前景。
    的頭像 發表于 10-29 16:53 ?300次閱讀
    固態<b class='flag-5'>電池</b>中復合鋰陽極上固體<b class='flag-5'>電解質</b>界面的調控

    無極電容器有電解質嗎,無極電容器電解質怎么測

    無極電容器通常存在電解質。電解質在無極電容器中起著重要作用,它可以增加電容器的電容量和穩定性。然而,電解質也可能帶來一些問題,如漏電和壽命問題。
    的頭像 發表于 10-01 16:45 ?314次閱讀

    具有密集交聯結構的明膠基水凝膠電解質(ODGelMA)

    目前,開發一種能夠成功實現兼具機械強度、離子電導率和界面適應性的綜合水凝膠電解質基質仍然具有挑戰性。
    的頭像 發表于 05-22 09:17 ?632次閱讀
    <b class='flag-5'>具有</b>密集交聯結構的明膠基水凝膠<b class='flag-5'>電解質</b>(ODGelMA)

    鈮酸鋰調控固態電解質電場結構促進鋰離子高效傳輸!

    聚合物基固態電解質得益于其易加工性,最有希望應用于下一代固態鋰金屬電池。
    的頭像 發表于 05-09 10:37 ?650次閱讀
    鈮酸鋰調控固態<b class='flag-5'>電解質</b>電場結構促進鋰離子高效傳輸!

    質子型弱配位電解液實現無腐蝕超薄金屬電池

    金屬電池以高容量、低成本、環保等特點受到廣泛關注。但由于金屬在傳統水系電解液中熱力學不穩定,金屬
    的頭像 發表于 04-02 09:05 ?454次閱讀
    非<b class='flag-5'>質子</b>型弱配位<b class='flag-5'>電解</b>液實現無腐蝕超薄<b class='flag-5'>鋅</b>金屬<b class='flag-5'>電池</b>

    請問聚合物電解質是如何進行離子傳導的呢?

    在目前的聚合物電解質體系中,高分子聚合物在室溫下都有明顯的結晶性,這也是室溫下固態聚合物電解質的電導率遠遠低于液態電解質的原因。
    的頭像 發表于 03-15 14:11 ?1089次閱讀
    請問聚合物<b class='flag-5'>電解質</b>是如何進行離子傳導的呢?

    電池有望5年內取代鋰離子電池 顛覆性的電池技術

    這款電池的獨到之處在于,它使用水替代了傳統的有機電解質,從而完全消除了電池起火和爆炸的風險。
    的頭像 發表于 03-06 15:03 ?961次閱讀

    不同類型的電池電解質都是什么?

    電解質通過促進離子在充電時從陰極到陽極的移動以及在放電時反向的移動,充當使電池導電的催化劑。離子是失去或獲得電子的帶電原子,電池電解質由液體,膠凝和干燥形式的可溶性鹽,酸或其他堿組成
    的頭像 發表于 02-27 17:42 ?1432次閱讀

    低晶格失配基底構建可逆負極的策略

    水系離子電池(AZIBs)具有本征安全、環境友好、比容量和低成本等優點,有望成為有機電解質基鋰電池
    的頭像 發表于 02-23 09:29 ?566次閱讀
    低晶格失配基底構建<b class='flag-5'>高</b>可逆<b class='flag-5'>鋅</b>負極的策略

    新型固體電解質材料可提高電池安全性和能量容量

    利物浦大學的研究人員公布了一種新型固體電解質材料,這種材料能夠以與液體電解質相同的速度傳導鋰離子,這是一項可能重塑電池技術格局的重大突破。
    的頭像 發表于 02-19 16:16 ?847次閱讀

    介電填料誘導雜化界面助力負載鋰金屬電池

    采用高安全和電化學穩定的聚合物固態電解質取代有機電解液,有望解決液態鋰金屬電池的產氣和熱失控等問題。
    的頭像 發表于 01-22 09:56 ?1002次閱讀
    介電填料誘導雜化界面助力<b class='flag-5'>高</b>負載鋰金屬<b class='flag-5'>電池</b>

    關于固態電解質的基礎知識

    固態電解質在室溫條件下要求具有良好的離子電導率,目前所采用的簡單有效的方法是元素替換和元素摻雜。
    的頭像 發表于 01-19 14:58 ?1.8w次閱讀
    關于固態<b class='flag-5'>電解質</b>的基礎知識

    分子篩電解質膜助力超長壽命離子電池

    水系離子電池(AZIBs)具有成本低、不易燃燒的金屬和水電解質等優點。
    的頭像 發表于 12-21 09:27 ?558次閱讀
    分子篩<b class='flag-5'>電解質</b>膜助力超長壽命<b class='flag-5'>鋅</b>離子<b class='flag-5'>電池</b>

    自組裝硫醇分子層抑制枝晶和電極腐蝕助力穩定水系電池

    雖然鋰電池被認為是儲能系統的重要里程碑,但是由于堿金屬材料供應有限、成本以及易燃有機電解質活性鋰所引發的安全問題,它們的應用受到了一定的限制。
    的頭像 發表于 12-14 09:14 ?990次閱讀
    自組裝硫醇分子層抑制枝晶和電極腐蝕助力穩定水系<b class='flag-5'>鋅</b><b class='flag-5'>電池</b>

    一種有機-無機非對稱固態電解質,實現長循環穩定的高壓鋰電池

    通過非對稱有機-無機復合固態電解質的協同效應,改善了不同陰極(LiFePO4和LiNi0.8Mn0.1Co0.1O2)/鋰電池的循環穩定性,顯著拓寬了電化學穩定窗口(5.3 V)并大大增強了鋰枝晶的抑制。
    的頭像 發表于 12-10 09:23 ?1742次閱讀
    一種<b class='flag-5'>有機</b>-無機非對稱固態<b class='flag-5'>電解質</b>,實現長循環穩定的高壓鋰<b class='flag-5'>電池</b>