精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

GPU引領的深度學習

星星科技指導員 ? 來源:mouser ? 作者:M. Tim Jones ? 2023-05-09 09:58 ? 次閱讀

早期的機器學習以搜索為基礎,主要依靠進行過一定優化的暴力方法。但是隨著機器學習逐漸成熟,它開始專注于加速技術已經很成熟的統計方法和優化問題。同時深度學習的問世更是帶來原本可能無法實現的優化方法。本文將介紹現代機器學習如何找到兼顧規模和速度的新方法。

AI領域的轉變

在本系列的第1部分中,我們探討了AI的一些歷史,以及從Lisp到現代編程語言以及深度學習等新型計算智能范式的歷程。我們還討論了人工智能的早期應用,它們依賴于經過優化的搜索形式、在海量數據集上進行訓練的現代神經網絡架構,同時解決了十年前還被認為不可能的難題。然而目前仍有兩大難題有待解決,即:如何進一步加速這些應用,以及將它們限制在智能手機這樣的功耗優化環境中。

今天,深度學習成為了多數加速技術的重點研究對象。深度學習是一種神經網絡架構,它依賴于多層神經網絡,其中的每一層都可以支持不同的功能以進行特征檢測。這些深層神經網絡依賴于可方便運用并行計算的矢量運算, 并為神經網絡層分布式計算以及同層諸多神經元并行計算創造了條件。

通過GPU加速機器學習

圖形處理單元(GPU)最初并不是用于加速深度學習應用。GPU是一種特殊的設備,用于加速輸出到顯示設備的幀緩沖區(內存)的構建。它將渲染后的圖像存入幀緩沖區,而不是依靠處理器來完成。GPU由數以千計的獨立內核組成,它們并行運行并執行矢量運算等特定類型的計算。盡管最初GPU專為視頻應用而設計,但人們發現它們也可以加速矩陣乘法等科學計算。

開發人員既可以借助于GPU供應商提供的API將GPU處理功能集成到應用中,也可以采用適用于諸多不同環境的標準軟件包方式。R編程語言和編程環境包含與GPU協同工作來加快處理速度的軟件包,例如gputools、gmatrix和gpuR。GPU也可以通過numba軟件包或Theano等各種庫借助于Python進行編程。

通過這些軟件包,任何有意將GPU加速應用于機器學習的人都可以達成愿望。但是工程師們還在研究更專門的方法。2019年,英特爾?以20億美元的價格收購了Habana Labs, 一家致力于為服務器中的機器學習加速器開發定制芯片公司。此外,英特爾還于2017年以150億美元收購了自動駕駛芯片技術企業Mobileye。

定制芯片和指令

除了服務器和臺式機中的GPU加速之外,用于機器學習的加速器正在試圖超越傳統平臺,進軍功耗受限的嵌入式設備和智能手機。這些加速器形式多樣,包括U盤、API、智能手機神經網絡加速器以及用于深度學習加速的矢量指令等。

適用于智能手機的深度學習

深度學習工具包已經從PC端延伸到智能手機,可為存在更多限制的網絡提供支持。TensorFlow Lite和Core ML等框架已經部署在用于機器學習應用的移動設備上。Apple?最近發布了A12 Bionic芯片,這款芯片包括一個8核神經網絡引擎,用于開發更加節能的神經網絡應用, 從而擴展Apple智能手機上的深度學習應用。

Google發布了適用于Android? 8.1并具有機器學習功能的神經網絡API (NNAPI), 目前已應用于Google Lens自然語言處理和圖像識別背景下的Google Assistant。NNAPI與其他深度學習工具包相似,但它是針對Android智能手機環境及其資源限制而構建的。

深度學習USB

英特爾發布了其新版神經計算棒,以U盤的形式加速深度學習應用。TensorFlow、Caffe和PyTorch等眾多機器學習框架都可以使用它。當沒有GPU可用時,這將是一個不錯的選擇,同時還可以快速構建深度學習應用原型。

深度學習指令

最后,在機器學習計算從CPU轉移到GPU的同時,英特爾使用新的指令優化了其Xeon指令集,來加速深度學習。這些被稱為AVX-512擴展的新指令(所謂的矢量神經網絡指令或VNNi)提高了卷積神經網絡運算的處理量。

總結

GPU在機器學習中的應用實現了在眾多應用中構建和部署大規模深度神經網絡的能力。機器學習框架使構建深度學習應用變得簡單。智能手機供應商也不甘人后,為受到諸多限制的應用集成了高能效的神經網絡加速器(以及用于定制應用的API)。現在市面上還有其他可轉移到USB硬件上的加速器,許多新的初創公司也在加大加速器領域的投入,為未來機器學習應用做準備。

審核編輯:郭婷

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • gpu
    gpu
    +關注

    關注

    28

    文章

    4703

    瀏覽量

    128725
  • 機器學習
    +關注

    關注

    66

    文章

    8382

    瀏覽量

    132443
  • 深度學習
    +關注

    關注

    73

    文章

    5493

    瀏覽量

    120998
收藏 人收藏

    評論

    相關推薦

    相比GPU和GPP,FPGA是深度學習的未來?

    相比GPU和GPP,FPGA在滿足深度學習的硬件需求上提供了具有吸引力的替代方案。憑借流水線并行計算的能力和高效的能耗,FPGA將在一般的深度學習
    發表于 07-28 12:16 ?7472次閱讀

    FPGA在深度學習應用中或將取代GPU

    現場可編程門陣列 (FPGA) 解決了 GPU 在運行深度學習模型時面臨的許多問題 在過去的十年里,人工智能的再一次興起使顯卡行業受益匪淺。英偉達 (Nvidia) 和 AMD 等公司的股價也大幅
    發表于 03-21 15:19

    新手小白怎么學GPU云服務器跑深度學習?

    新手小白想用GPU云服務器跑深度學習應該怎么做? 用個人主機通常pytorch可以跑但是LexNet,AlexNet可能就直接就跑不動,如何實現更經濟便捷的實現GPU云服務器
    發表于 06-11 17:09

    深度學習框架TensorFlow&TensorFlow-GPU詳解

    TensorFlow&TensorFlow-GPU深度學習框架TensorFlow&TensorFlow-GPU的簡介、安裝、使用方法詳細攻略
    發表于 12-25 17:21

    Mali GPU支持tensorflow或者caffe等深度學習模型嗎

    Mali GPU 支持tensorflow或者caffe等深度學習模型嗎? 好像caffe2go和tensorflow lit可以部署到ARM,但不知道是否支持在GPU運行?我希望把訓
    發表于 09-16 14:13

    什么是深度學習?使用FPGA進行深度學習的好處?

    上述分類之外,還被用于多項任務(下面顯示了四個示例)。在 FPGA 上進行深度學習的好處我們已經提到,許多服務和技術都使用深度學習,而 GPU
    發表于 02-17 16:56

    深度學習方案ASIC、FPGA、GPU比較 哪種更有潛力

    幾乎所有深度學習的研究者都在使用GPU,但是對比深度學習硬鑒方案,ASIC、FPGA、GPU三種
    發表于 02-02 15:21 ?1w次閱讀
    <b class='flag-5'>深度</b><b class='flag-5'>學習</b>方案ASIC、FPGA、<b class='flag-5'>GPU</b>比較 哪種更有潛力

    GPU和GPP相比誰才是深度學習的未來

    相比GPU和GPP,FPGA在滿足深度學習的硬件需求上提供了具有吸引力的替代方案。憑借流水線并行計算的能力和高效的能耗,FPGA將在一般的深度學習
    發表于 10-18 15:48 ?1476次閱讀

    GPU引領深度學習

    早期的機器學習以搜索為基礎,主要依靠進行過一定優化的暴力方法。但是隨著機器學習逐漸成熟,它開始專注于加速技術已經很成熟的統計方法和優化問題。同時深度學習的問世更是帶來原本可能無法實現的
    發表于 02-26 06:11 ?5次下載
    <b class='flag-5'>GPU</b><b class='flag-5'>引領</b>的<b class='flag-5'>深度</b><b class='flag-5'>學習</b>

    GPU 引領深度學習

    GPU 引領深度學習
    的頭像 發表于 01-04 11:17 ?700次閱讀

    深度學習如何挑選GPU

    NVIDIA的標準庫使在CUDA中建立第一個深度學習庫變得非常容易。早期的優勢加上NVIDIA強大的社區支持意味著如果使用NVIDIA GPU,則在出現問題時可以輕松得到支持。
    發表于 07-12 11:49 ?553次閱讀
    <b class='flag-5'>深度</b><b class='flag-5'>學習</b>如何挑選<b class='flag-5'>GPU</b>?

    GPU的張量核心: 深度學習的秘密武器

    GPU最初是為圖形渲染而設計的,但是由于其卓越的并行計算能力,它們很快被引入深度學習中。深度學習的迅速發展離不開計算機圖形處理單元(
    的頭像 發表于 09-26 08:29 ?900次閱讀
    <b class='flag-5'>GPU</b>的張量核心: <b class='flag-5'>深度</b><b class='flag-5'>學習</b>的秘密武器

    GPU深度學習中的應用與優勢

    人工智能的飛速發展,深度學習作為其重要分支,正在推動著諸多領域的創新。在這個過程中,GPU扮演著不可或缺的角色。就像超級英雄電影中的主角一樣,GPU
    的頭像 發表于 12-06 08:27 ?1219次閱讀
    <b class='flag-5'>GPU</b>在<b class='flag-5'>深度</b><b class='flag-5'>學習</b>中的應用與優勢

    深度學習GPU加速效果如何

    圖形處理器(GPU)憑借其強大的并行計算能力,成為加速深度學習任務的理想選擇。
    的頭像 發表于 10-17 10:07 ?159次閱讀

    GPU深度學習應用案例

    GPU深度學習中的應用廣泛且重要,以下是一些GPU深度學習應用案例: 一、圖像識別 圖像識別是
    的頭像 發表于 10-27 11:13 ?334次閱讀