精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

相較IGBT,SiC如何優化混動和電動汽車的能效和性能?

安森美 ? 來源:安森美 ? 作者:安森美 ? 2023-05-09 10:49 ? 次閱讀

本文作者:安森美高級產品線經理Jonathan Liao

隨著人們對電動汽車 (EV) 和混動汽車 (HEV) 的興趣和市場支持不斷增加,汽車制造商為向不斷擴大的客戶群提供優質產品,競爭日益激烈。由于 EV 的電機需要高千瓦時電源來驅動,傳統的 12 V 電池已讓位于 400-450 V DC 數量級的電池組,成為 EV 和 HEV 的主流電池電壓。

市場已經在推動向更高電壓電池的轉變。800 V DC 和更大的電池將變得更占優勢,因為使用更高的電壓意味著系統可以在更低的電流下運行,同時實現相同的功率輸出。較低電流的優點是損耗較低,需要管理的熱耗散較少,還有利于使用更小的電纜為整個車輛供電

不斷發展的電動汽車技術對于在全球范圍內實現更可持續的交通運輸至關重要。到 2024 年底,道路上將有超過 700 萬輛汽車搭載安森美 (onsemi)VE-Trac功率模塊,僅這些車輛就可以每年減少 2900 萬噸的二氧化碳排放量(見圖 1)。

圖 1.減少車輛搭載安森美 VE-Trac 功率模塊后可減少的二氧化碳排放量 + 主驅逆變器

電池的主要負載是車輛的電機,使用交流電機的 EV 和 HEV 依賴于主驅逆變器將直流電池電源轉換為交流電(見圖 2)。主驅逆變器是電動汽車的心臟,提供驅動汽車前進所需的扭矩和加速度。主驅逆變器的兩個主要設計考慮因素包括轉換效率和峰值功率。

圖 2. 主驅逆變器將直流電池電源轉換為交流電源,提供扭矩和加速度

從 DC 到 AC 的電源轉換效率越高,車輛就可以使用更小的電池做更多的事情。更高的效率還意味著系統可以提供更多的功率,并減少需要管理的散熱。

峰值功率決定了車輛的整體性能,特別是車輛的瞬時扭矩和加速能力。效率(續航里程)和峰值功率(性能)共同決定了車輛的應用和使用場景。

如今,許多 EV 和 HEV 都是基于 IGBT 技術構建的。隨著碳化硅 (SiC) 技術的問世,更高的效率和性能成為可能。

碳化硅的優勢

IGBT 技術通常為中低檔車輛提供更具成本效益的解決方案,SiC 提供出色的效率和峰值功率,尤其是在較高電壓下,適用于非常重視續航里程和性能的車輛,系統成本也更加靈活。每個芯片阻抗更低,可實現出色的效率和熱優化。在這些功能的共同作用下,每英里的電池消耗得以降低。雖然 SiC 的成本高于 IGBT,但在許多應用中,這被 SiC 提高的能效所帶來的整車其他方面的成本節省所抵消。

圖 3 到圖 6比較了 IGBT 效率與 SiC 效率。在圖 3 和圖 4中,NVH820S75L4SPB是 IGBT 模塊(方形連線圖),而NVXR17S90M2SPB是 SiC 模塊(圓形連線圖)。這兩張圖顯示了 IGBT 因開關頻率和 RMS 負載電流具有更高的功率損耗。圖 5 和圖 6 顯示,以更高頻率運行的 SiC 可實現出色的效率增益。

圖 3. 8 kHz 開關頻率時的功率損耗

圖 4. 15 kHz 開關頻率時的功率損耗

圖 5. 8 kHz 時的效率增益

圖 6. 15 kHz 時的效率增益 轉換效率:

就本質而言,當前的IGBT 技術會隨著電壓的增加而變得更厚且效率更低,從而導致需要更高的阻斷電壓。可以基于 IGBT 構建更高電壓的逆變器,但隨著電動汽車的電壓達到 800 V 及以上,SiC 的效率將大大高于 IGBT。在更高電壓下,SiC 不必像 IGBT 一樣厚也能實現阻斷電壓。在標準負載下,IGBT 的效率約為 94%。然而,在較低負載下,其效率下降至 92%,例如當車輛以巡航速度運行時。相比之下,SiC 在標準負載下可達到 98%,增益為 4%。SiC 在較低負載下具有 95% 的效率,增益為 3%。

增加行駛里程:

一個 100 千瓦時的電池和基于 IGBT 的逆變器解決方案,可以產生 300 英里的最大行駛里程。使用 SiC ,效率提高 3% 以上,將使車輛的續航里程增加 9 英里或更多。對于具有更大電池的車輛,例如長途運輸卡車,續航里程會更遠。

更小直徑的布線:

電機可以用較低的電流驅動,因為基于 SiC 的主驅逆變器在較高電壓下運行效率更高。這樣,就可以使用直徑較小的電纜。貫穿車輛的布線的直徑變小,減少了整體重量,這樣只需更少的電力就能驅動車輛并增加總的行駛里程。此外,更小直徑的布線成本更低,抵消了使用高壓 SiC 主驅逆變器的成本。

系統尺寸:

SiC 技術的效率更高,使高壓主驅逆變器在尺寸上更加緊湊,而不會影響效率或峰值功率。較小的逆變器使設計人員在逆變器的放置方面具有更大的靈活性,并最大限度地增加了車內的乘客空間和可用空間。

熱管理:

管理車輛內的熱量對于維持整體系統效率至關重要。基于 SiC 的主驅逆變器具有更高的熱效率,可產生更低的損耗和更少的散熱。這意味著逆變器在較低的溫度下運行,帶來雙重好處:牽引系統可以實現更高的峰值功率,同時降低散熱系統整體成本。

VE-Trac 高度集成功率模塊

IGBT 和 SiC 都是主驅逆變器系統的可行方案。然而,許多因素會影響整個牽引系統中主驅逆變器的效率和性能,沒有一個簡單的方程式可以確定適合給定應用的最佳方法。

通過與安森美合作,工程師可以探索各種選擇。安森美擁有完整的主驅逆變器解決方案組合,包括 IGBT 和 SiC 技術,因此 OEM 和一級供應商可以為其應用找到合適的逆變器半導體解決方案。安森美為 EV 和 HEV 應用提供廣泛的牽引逆變器解決方案,VE-Trac 系列就是用于汽車功能電子化的高度集成功率模塊。這些模塊采用創新的封裝、先進的散熱技術并具備出色的可靠性。

安森美旗下的整個 IGBT 和 SiC 主驅逆變器產品線均采用標準的外殼模塊封裝和外形。通過標準封裝,OEM 可以使用同等的模塊外形,將現有的基于 IGBT 的系統遷移到 SiC。這使 OEM 只需對逆變器系統設計進行少量修改,即可在現有應用中獲得 SiC 的全部優勢。

然而,隨著行業朝著提高可靠性的方向發展,安森美也提供壓鑄模封裝 (TMP) 以實現更出色的可靠性。隨著 OEM 向市場推出新設計,TMP 可將器件封裝在非常堅固的塑封壓鑄模封裝中,提高電動汽車在惡劣運行環境中電氣連接的可靠性。安森美提供半橋解決方案。

在封裝選項中,安森美提供先進的直接散熱技術以最大限度地提高導熱性,從而提高系統性能和可靠性。模塊在冷卻劑和 IGBT / SiC 芯片之間具有直接散熱路徑,無需額外的熱元件,例如熱界面材料 (TIM) 或散熱片。對于需要更多散熱的應用,雙面散熱允許冷卻劑在模塊的頂面和底面流動,以更快地散熱。

可靠性是 EV 和 HEV 的一個重要因素。通過使用先進散熱技術改進散熱并采用剛性封裝來保護電氣連接,OEM 可以設計出能夠在更長距離內運行而不會出現主驅系統故障的電動汽車。為了進一步提高可靠性,安森美采用壓合式引腳技術來連接功率模塊和柵極驅動板之間的信號引腳。壓合式引腳是在其他汽車應用中經過驗證的技術,例如 TPMS 和電機控制。壓合式引腳可確保穩固連接,而且牢固、可靠、無焊料、可重復,且針對自動化和大批量制造進行了優化。

各種 VE-Trac 模塊還集成了智能 IGBT 芯片,使模塊能夠自我監控自身的運行狀況,以應對過熱和過流等保護事件。在片上執行自我監控而不是通過外部 NTC 熱敏電阻進行監控,可以使模塊響應更快,并最大限度地減少此類事件發生時的影響。

圖 7. VE-Trac 系列是高度集成的功率模塊,整合一系列電壓、功率和制造技術,為各種混動和電動汽車應用提供合適的解決方案。

圖 7顯示了 VE-Trac 系列中 OEM 可用的許多選項。采用直接水冷技術的 VE-Trac Direct 模塊可輕松與壓合式標準外殼模塊封裝相集成,以提高靈活性和可靠性(見圖 8)。借助 IGBT 和 SiC 選項,VE-Trac Direct 模塊可提供 100 kW 以上的功率級可擴展性。

圖 8. VE-Trac Direct 模塊可擴展到 100 kW 以上且易于集成

VE-Trac Dual 模塊采用緊湊型 TMP 外形尺寸,體積縮小 30%,同時為需要擴展至 300 kW 的空間受限應用提供相當的輸出功率(見圖 9)。VE-Trac 的使用壽命比標準模塊長 3 倍以上,還提供出色的電氣和熱性能、極低的封裝電感 (<7 nH) 和出色的 $/kW 值。集成了智能的 IGBT 片上溫度和電流傳感器,可實現更嚴格的容差(± 7°,而基于 NTC 的傳感為 ± 14°)和更快的故障檢測(200 ns,而 DESAT 為 2 μs+)。

圖 9. VE-Trac Dual 模塊采用緊湊型 TMP 外形,提供出色的電氣和熱性能及 $/kW 值。

VE-Trac B2-Direct SiC 模塊采用新技術,提供 SiC 的效率和高峰值功率,含下一代封裝、直接散熱和熱性能技術,可延長整體壽命性能(見圖 10)。其他主要特性包括:通過銀燒結將芯片連接到 DBC 上、源夾具互連、與 AHPM DSC 的封裝兼容性,以及從中功率到高功率的可擴展功率輸出。

圖 10. VE-Trac B2-Direct SiC 模塊通過下一代封裝、直接散熱、和熱性能技術提供出色的效率和高峰值功率。

可擴展集成

憑借多功能和可擴展的封裝選項,安森美可為每個應用提供合適的模塊。VE-Trac Direct 功率模塊提供 100 至 180 kW 的可擴展解決方案,具有適用于三相電機應用的相同機械封裝。VE-Trac Dual 解決方案提供了極高的靈活性,功率模塊可以垂直橫向排列,可根據應用調整逆變器系統,使之更長更薄或更短更厚。此外,逆變器系統可以在同一相上并聯放置兩個多功率模塊,以增加峰值功率,從而在類似的緊湊外形中提供高達 2 倍的功率。

作為功率半導體市場的領導者,安森美了解設計高效、可靠和可持續的電源解決方案的重要性。VE-Trac 系列等廣泛而靈活的集成模塊產品組合使 OEM 能夠為應用選擇合適的解決方案,從低電壓、具有成本效益的 IGBT 模塊,到提供高效率和高峰值功率的高壓 SiC 模塊等。安森美也是一家 SiC 供應商,提供全面的垂直整合量產服務。

憑借在汽車行業的悠久歷史(40 多年),安森美還提供完整的設計支持,包括全面的應用筆記和仿真模型,用戶還可獲得安森美功能安全專家和全球開發支持團隊的幫助。除了對 SiC 制造等技術進行大量投資外,安森美還以可靠的封裝、完整的垂直電源整合和先進的散熱方案等創新,不斷推動整個行業的進步。安森美了解汽車行業的發展方向,并致力于提供 OEM 所需的技術,為混動和電動汽車提供可靠、優質的電力驅動。 點個星標,茫茫人海也能一眼看到我

審核編輯:湯梓紅

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 電動汽車
    +關注

    關注

    155

    文章

    11939

    瀏覽量

    230451
  • 安森美
    +關注

    關注

    32

    文章

    1648

    瀏覽量

    91937
  • IGBT
    +關注

    關注

    1265

    文章

    3761

    瀏覽量

    248293
  • SiC
    SiC
    +關注

    關注

    29

    文章

    2759

    瀏覽量

    62450
  • 功率模塊
    +關注

    關注

    10

    文章

    455

    瀏覽量

    45045

原文標題:相較IGBT,SiC如何優化混動和電動汽車的能效和性能?

文章出處:【微信號:onsemi-china,微信公眾號:安森美】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    一鍵下載 | 電動汽車市場應用案例

    混合動力和電動汽車(EV)的高壓隔離進行持續監測至關重要。雖然絕緣檢測系統可以使用不同類型的隔離器件,但干簧繼電器更適合這種應用。干簧繼電器:電動
    的頭像 發表于 11-05 08:00 ?526次閱讀
    一鍵下載 | <b class='flag-5'>電動</b>與<b class='flag-5'>混</b><b class='flag-5'>動</b><b class='flag-5'>汽車</b>市場應用案例

    SiC MOSFET在電動汽車中的應用問題

    電動汽車中可能用到SiC MOSFET的主要汽車電子零部件包括車載充電機、車載DCDC變換器以及主驅逆變器等高壓高功率電力電子轉換器。
    的頭像 發表于 09-29 14:28 ?225次閱讀
    <b class='flag-5'>SiC</b> MOSFET在<b class='flag-5'>電動汽車</b>中的應用問題

    虛擬電廠如何優化調度電動汽車充電

    大量電動汽車用戶的無序充電可能造成電網負荷劇烈波動,危及電網的安全穩定。隨著電動汽車入網技術的應用,將電動汽車充電站及其周邊的分布式新能源發電聚合為虛擬電廠后進行優化調度,有助于改善
    的頭像 發表于 09-27 16:36 ?266次閱讀
    虛擬電廠如何<b class='flag-5'>優化</b>調度<b class='flag-5'>電動汽車</b>充電

    羅姆SiC技術賦極氪電動車核心部件

    近期,浙江吉利控股集團旗下的高端電動汽車品牌“極氪”迎來技術升級,其“X”、“009”及“001”三款主力車型的主機逆變器上,成功搭載了羅姆第4代SiC MOSFET裸芯片的功率模塊。這一創新應用不僅彰顯了羅姆在半導體技術領域的領先地位,也標志著極氪
    的頭像 發表于 09-03 14:38 ?509次閱讀

    恩智浦和采埃孚合作開發基于SiC電動汽車牽引逆變器解決方案

    恩智浦半導體宣布與電動汽車領域領先企業采埃孚股份公司(ZF Friedrichshafen AG)合作下一代基于SiC電動汽車(EV)牽引逆變器解決方案。解決方案采用恩智浦先進的GD316x高壓(HV)隔離柵極驅動器,旨在加速
    的頭像 發表于 08-27 09:48 ?1084次閱讀

    電動汽車有序充電優化策略

    優化問題。無序充電不僅可能導致電網負荷高峰,影響電網穩定,還可能增加充電成本,降低用戶體驗。因此,探索電動汽車有序充電優化策略,對于推動電動汽車產業的可持續發展具有重要意義。 1
    的頭像 發表于 08-24 12:25 ?2554次閱讀
    <b class='flag-5'>電動汽車</b>有序充電<b class='flag-5'>優化</b>策略

    電動汽車系統的作用和特點

    電動汽車系統,作為電動汽車的核心組成部分,對于電動汽車性能、續航里程以及能源利用效率具有至關重要的影響。以下將詳細闡述
    的頭像 發表于 08-08 18:04 ?1179次閱讀

    電動汽車驅動系統的組成和特點

    電動汽車驅動系統作為電動汽車的核心組成部分,承擔著將電能轉化為機械,進而驅動車輛行駛的重要任務。其設計、性能與效率直接影響到電動汽車的行駛
    的頭像 發表于 08-06 17:29 ?850次閱讀

    JAE電池管理系統解決方案助力優化電動汽車性能

    我們很高興向您介紹專為電動汽車應用量身定制的電池管理系統 (BMS) 的最新進展。我們的先進技術旨在優化電動汽車性能、可靠性和效率。
    的頭像 發表于 07-11 15:29 ?500次閱讀

    日立ECN30系列功率模塊助力電動汽車(EV)領域

    電動汽車領域,碳化硅(SiC)功率器件,正引領著一場技術革新,其相較于傳統硅基功率器件展現出了顯著優勢。電動汽車制造商紛紛采用SiC功率器
    的頭像 發表于 07-05 11:09 ?1399次閱讀
    日立ECN30系列功率模塊助力<b class='flag-5'>電動汽車</b>(EV)領域

    新能源電動汽車充電樁的設計與優化

    摘要: 隨著電動汽車的普及,電動汽車充電樁的設計與優化成了一個重要的研究課題。本論文旨在分析電動汽車充電樁的設計要素,并提出相應的優化方案。
    的頭像 發表于 06-11 10:55 ?679次閱讀
    新能源<b class='flag-5'>電動汽車</b>充電樁的設計與<b class='flag-5'>優化</b>

    大眾汽車調整電動汽車戰略,擴大插電式混合動力汽車陣容

    據5月17日信息報道,繼福特、通用及奔馳案例后,大眾汽車已對其激進的電動汽車戰略做出微調。該德國汽車巨頭決定加碼插電式車型,原因在于
    的頭像 發表于 05-18 16:55 ?1021次閱讀

    SiC器件如何提升電動汽車的系統效率

    SiC器件可以提高電動汽車的充電模塊性能,包括提高頻率、降低損耗、縮小體積以及提升效率等。這有助于提升電動汽車的整體性能表現。
    的頭像 發表于 03-18 18:12 ?1539次閱讀
    <b class='flag-5'>SiC</b>器件如何提升<b class='flag-5'>電動汽車</b>的系統效率

    聊聊SiC電動汽車上的應用

    上期EV焦點欄目 我們聊了聊電動汽車為什么要上800V,也大致了解了SiC和800V互相成就的關系。今天這期,我們相對放大一下,聊聊SiC電動汽車上的應用。
    的頭像 發表于 01-02 13:43 ?1005次閱讀
    聊聊<b class='flag-5'>SiC</b>在<b class='flag-5'>電動汽車</b>上的應用

    Cadence為電動汽車提升注入新動力

    電動汽車(EV)為例,通過提升電池組的直流電工作電壓,就能有效降低傳動系統的電流負荷,這為設計師提供了一個新的思路:使用更輕便且成本更低的鋁導線替代傳統銅線圈。這樣減輕的重量可以轉化為續航里程
    的頭像 發表于 12-18 12:25 ?1321次閱讀
    Cadence為<b class='flag-5'>電動汽車</b><b class='flag-5'>能</b><b class='flag-5'>效</b>提升注入新動力