精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

GPT-4拿下最難數(shù)學(xué)推理數(shù)據(jù)集新SOTA!新型Prompting讓大模型推理能力狂升!

CVer ? 來源:機器之心 ? 2023-05-15 15:35 ? 次閱讀

模擬人類推理過程,華為諾亞提出 Progressive-Hint Prompting (PHP) 引導(dǎo)大模型漸近正確答案。

近期,華為聯(lián)和港中文發(fā)表論文《Progressive-Hint Prompting Improves Reasoning in Large Language Models》,提出 Progressive-Hint Prompting (PHP),用來模擬人類做題過程。在 PHP 框架下,Large Language Model (LLM) 能夠利用前幾次生成的推理答案作為之后推理的提示,逐步靠近最終的正確答案。要使用 PHP,只需要滿足兩個要求: 1) 問題能夠和推理答案進行合并,形成新的問題;2) 模型可以處理這個新的問題,給出新的推理答案。

f01d6272-f2cc-11ed-90ce-dac502259ad0.png

結(jié)果表明,GP-T-4+PHP 在多個數(shù)據(jù)集上取得了 SOTA 結(jié)果,包括 SVAMP (91.9%), AQuA (79.9%), GSM8K (95.5%) 以及 MATH (53.9%)。該方法大幅超過 GPT-4+CoT。比如,在現(xiàn)在最難的數(shù)學(xué)推理數(shù)據(jù)集 MATH 上,GPT-4+CoT 只有 42.5%,而 GPT-4+PHP 在 MATH 數(shù)據(jù)集的 Nember Theory (數(shù)論) 子集提升 6.1%, 將 MATH 整體提升到 53.9%,達到 SOTA。

f03d20da-f2cc-11ed-90ce-dac502259ad0.png

論文鏈接:https://arxiv.org/abs/2304.09797

代碼鏈接:https://github.com/chuanyang-Zheng/Progressive-Hint

介紹

隨著 LLM 的發(fā)展,涌現(xiàn)了關(guān)于 prompting 的一些工作,其中有兩個主流方向:

一個以 Chain-Of-Thought( CoT,思維鏈) 為代表,通過清楚得寫下推理過程,激發(fā)模型的推理能力;

另一個以 Self-Consistency (SC) 為代表,通過采樣多個答案,然后進行投票得到最終答案。

顯然,現(xiàn)存的兩種方法,沒有對問題進行任何的修改,相當(dāng)于做了一遍題目之后就結(jié)束了,而沒有反過來帶著答案進行再次檢查。PHP 嘗試模擬更加類人推理過程:對上次的推理過程進行處理,然后合并到初始的問題當(dāng)中,詢問 LLM 進行再次推理。當(dāng)最近兩次推理答案一致時,得到的答案是準(zhǔn)確的,將返回最終答案。具體的流程圖如下所示:

f05a770c-f2cc-11ed-90ce-dac502259ad0.png

在第一次與 LLM 交互的時候,應(yīng)當(dāng)使用 Base Prompting (基礎(chǔ)提示), 其中的 prompt(提示)可以是 Standard prompt,CoT prompt 或者其改進版本。通過 Base Prompting,可以進行第一次交互,然后得到初步的答案。在隨后的交互中,應(yīng)當(dāng)使用 PHP,直至最新的兩個答案一致。

PHP prompt 基于 Base Prompt 進行修改。給定一個 Base Prompt,可以通過制定的 PHP prompt design principles 來得到對應(yīng)的 PHP prompt。具體如下圖所示:

f07a0d24-f2cc-11ed-90ce-dac502259ad0.png

作者希望 PHP prompt 能夠讓大模型學(xué)習(xí)到兩種映射模式:

1)如果給的 Hint 是正確答案,那么返回的答案依然要是正確答案 (具體如上圖所示的「Hint is the correct answer」);

2)如果給的 Hint 是錯誤答案,那么 LLM 要通過推理,跳出錯誤答案的 Hint,返回正確答案(具體如上圖所示的「Hint is the incorrect answer」)。

按照這種 PHP prompt 的設(shè)計規(guī)則,給定任意現(xiàn)存的 Base Prompt,作者都可以設(shè)定出對應(yīng)的 PHP Prompt。

實驗

作者使用七個數(shù)據(jù)集,包括 AddSub、MultiArith、SingleEQ、SVAMP、GSM8K、 AQuA 和 MATH。同時,作者一共使用了四個模型來驗證作者的想法,包括 text-davinci-002、text-davinci-003、GPT-3.5-Turbo 和 GPT-4。

主要結(jié)果

f0a6858e-f2cc-11ed-90ce-dac502259ad0.png

當(dāng)語言模型更強大、提示更有效時,PHP 的效果更好。相比于 Standard Prompt 和 CoT Prompt,Complex CoT prompt 表現(xiàn)出了顯著的性能提升。分析還顯示,使用強化學(xué)習(xí)進行微調(diào)的 text-davinci-003 語言模型比使用監(jiān)督指令微調(diào)的 text-davinci-002 模型表現(xiàn)更好,能夠提升文檔效果。text-davinci-003 的性能提高歸因于其增強的能力,使其更好地理解和應(yīng)用給定的提示。同時,如果只是使用 Standard prompt,那么 PHP 所帶來的提升并不明顯。如果需要讓 PHP 起到效果,至少需要 CoT 來激發(fā)模型的推理能力。

f0c754ee-f2cc-11ed-90ce-dac502259ad0.png

同時,作者也探究了交互次數(shù)與模型、prompt 之間的關(guān)系。當(dāng)語言模型更強大,提示更弱時,交互次數(shù)會減少。交互次數(shù)指代智能體與 LLMs 互動的次數(shù)。當(dāng)收到第一個答案時,交互次數(shù)為 1;收到第二個答案時,交互次數(shù)增加到 2。在圖 2 中,作者展示了各種模型和提示的交互次數(shù)。作者的研究結(jié)果表明:

1)在給定相同提示的情況下,text-davinci-003 的交互次數(shù)通常低于 text-davinci-002。這主要是由于 text-davinci-003 的準(zhǔn)確性更高,導(dǎo)致基礎(chǔ)答案和后續(xù)答案的正確率更高,因此需要更少的交互才能得到最終的正確答案;

2)當(dāng)使用相同的模型時,隨著提示變得更強大,交互次數(shù)通常會增加。這是因為當(dāng)提示變得更有效時,LLMs 的推理能力會得到更好的發(fā)揮,從而使它們能夠利用提示跳出錯誤答案,最終導(dǎo)致需要更高的交互次數(shù)才能達到最終答案,這使得交互次數(shù)增加。

Hint 質(zhì)量的影響

f0e53df6-f2cc-11ed-90ce-dac502259ad0.png

為了增強 PHP-Standard 的性能,將 Base Prompt Standard 替換為 Complex CoT 或 CoT 可以顯著提高最終性能。對 PHP-Standard 而言,作者觀察到在 Base Prompt Standard 下,GSM8K 的性能從 16.0% 提高到了在基礎(chǔ)提示 CoT 下的 50.2%,再提高到在基礎(chǔ)提示 Complex CoT 下的 60.3%。相反,如果將 Base Prompt Complex CoT 替換為 Standard,則最終性能會降低。例如,在將基礎(chǔ)提示 Complex CoT 替換為 Standard 后,PHP-Complex CoT 在 GSM8K 數(shù)據(jù)集上的性能從 71.6% 下降到了 65.5%。

如果 PHP 不是基于相應(yīng)的 Base Prompt 進行設(shè)計,那么效果可能進一步提高。使用 Base Prompt Complex CoT 的 PHP-CoT 在六個數(shù)據(jù)集中的四個數(shù)據(jù)集表現(xiàn)優(yōu)于使用 CoT 的 PHP-CoT。同樣地,使用基礎(chǔ)提示 CoT 的 PHP-Complex CoT 在六個數(shù)據(jù)集中的四個數(shù)據(jù)集表現(xiàn)優(yōu)于使用 Base Prompt Complex CoT 的 PHP-Complex CoT。作者推推測這是因為兩方面的原因:1)在所有六個數(shù)據(jù)集上,CoT 和 Complex CoT 的性能相似;2)由于 Base Answer 是由 CoT(或 Complex CoT)提供的,而后續(xù)答案是基于 PHP-Complex CoT(或 PHP-CoT),這就相當(dāng)于有兩個人合作解決問題。因此,在這種情況下,系統(tǒng)的性能可能進一步提高。

消融實驗

f117002a-f2cc-11ed-90ce-dac502259ad0.png

將句子 P1 和 P2 納入模型可以提高 CoT 在三個數(shù)據(jù)集上的表現(xiàn),但當(dāng)使用 Complex CoT 方法時,這兩個句子的重要性尤為明顯。在加入 P1 和 P2 后,該方法在六個數(shù)據(jù)集中有五個數(shù)據(jù)集的表現(xiàn)得到了提升。例如,在 SVAMP 數(shù)據(jù)集上,Complex CoT 的表現(xiàn)從 78.0% 提高到了 80.0%,在 GSM8K 數(shù)據(jù)集上從 68.3% 提高到了 71.6%。這表明,尤其是在模型的邏輯能力更強時,句子 P1 和 P2 的效果更為顯著。

f12df8a2-f2cc-11ed-90ce-dac502259ad0.png

在設(shè)計提示時需要同時包含正確和錯誤的提示。當(dāng)設(shè)計的提示同時包含正確和錯誤的提示時,使用 PHP 的效果優(yōu)于不使用 PHP。具體來說,提示中提供正確的提示會促進生成與給定提示相符的答案。相反,提示中提供錯誤的提示則會通過給定的提示鼓勵生成其他答案

PHP+Self-Consistency

f144ceb0-f2cc-11ed-90ce-dac502259ad0.png

f1aff58c-f2cc-11ed-90ce-dac502259ad0.png

使用 PHP 可以進一步提高性能。通過使用類似的提示和樣本路徑數(shù)量,作者發(fā)現(xiàn)在表 6 和圖 3 中,作者提出的 PHP-CoT 和 PHP-Complex CoT 總是比 CoT 和 Complex CoT 表現(xiàn)更好。例如,CoT+SC 的樣本路徑為 10、20 和 40 時,能夠在 MultiArith 數(shù)據(jù)集上達到 96.5% 的準(zhǔn)確率。因此,可以得出結(jié)論,CoT+SC 的最佳性能為 96.5%,使用 text-davinci-003。然而,在實施 PHP 之后,性能升至 97.1%。同樣,作者還觀察到在 SVAMP 數(shù)據(jù)集上,CoT+SC 的最佳準(zhǔn)確率為 83.3%,在實施 PHP 后進一步提高到 83.7%。這表明,PHP 可以打破性能瓶頸并進一步提高性能。

使用 PHP 可以降低 SC 的成本,眾所周知,SC 涉及更多的推理路徑,導(dǎo)致成本更高。表 6 說明,PHP 可以是降低成本的有效方法,同時仍保持性能增益。如圖 3 所示,使用 SC+Complex CoT,可以使用 40 個樣本路徑達到 78.1% 的準(zhǔn)確率,而加入 PHP 將所需平均推理路徑降低到 10×2.1531=21.531 條路徑,并且結(jié)果更好,準(zhǔn)確率達到了 78.2%。

GPT-3.5-Turbo 和 GPT-4

f1d1231a-f2cc-11ed-90ce-dac502259ad0.png

作者按照以前的工作設(shè)置,使用文本生成模型進行實驗。隨著 GPT-3.5-Turbo 和 GPT-4 的 API 發(fā)布,作者在相同的六個數(shù)據(jù)集上驗證了具有 PHP 的 Complex CoT 的性能。作者對這兩個模型都使用貪心解碼(即溫度 = 0)和 Complex CoT 作為提示。

如表 7 所示,提出的 PHP 增強了性能,在 GSM8K 上提高了 2.3%,在 AQuA 上提高了 3.2%。然而,與 text-davinci-003 相比,GPT-3.5-Turbo 表現(xiàn)出對提示的依附能力降低。作者提供了兩個例子來說明這一點:a)在提示缺失的情況下,GPT-3.5-Turbo 無法回答問題,并回復(fù)類似于 “由于答案提示缺失,我無法回答此問題。請?zhí)峁┐鸢柑崾疽岳^續(xù)” 的聲明。相比之下,text-davinci-003 在回答問題之前會自主生成并填充缺失的答案提示;b)當(dāng)提供超過十個提示時,GPT-3.5-Turbo 可能會回復(fù) “由于給出了多個答案提示,我無法確定正確的答案。請為問題提供一個答案提示?!?/p>

f1ec7ba6-f2cc-11ed-90ce-dac502259ad0.png

在部署 GPT-4 模型后,作者能夠在 SVAMP、GSM8K、AQuA 和 MATH 基準(zhǔn)測試上實現(xiàn)新的 SOTA 性能。作者提出的 PHP 方法不斷改善了 GPT-4 的性能。此外,與 GPT-3.5-Turbo 模型相比,作者觀察到 GPT-4 所需的交互次數(shù)減少了,這與 “當(dāng)模型更加強大時,交互次數(shù)會減少” 的發(fā)現(xiàn)相一致。

總結(jié)

本文介紹了 PHP 與 LLMs 交互的新方法,具有多個優(yōu)點:1)PHP 在數(shù)學(xué)推理任務(wù)上實現(xiàn)了顯著的性能提升,在多個推理基準(zhǔn)測試上領(lǐng)先于最先進的結(jié)果;2)使用更強大的模型和提示,PHP 可以更好地使 LLMs 受益;3)PHP 可以與 CoT 和 SC 輕松結(jié)合,進一步提高性能。

為了更好地增強 PHP 方法,未來的研究可以集中在改進問題階段的手工提示和答案部分的提示句子的設(shè)計上。此外,除了將答案當(dāng)作 hint,還可以確定和提取有助于 LLMs 重新考慮問題的新 hint。

審核編輯 :李倩

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 模型
    +關(guān)注

    關(guān)注

    1

    文章

    3174

    瀏覽量

    48720
  • 數(shù)據(jù)集
    +關(guān)注

    關(guān)注

    4

    文章

    1205

    瀏覽量

    24644
  • GPT
    GPT
    +關(guān)注

    關(guān)注

    0

    文章

    351

    瀏覽量

    15315

原文標(biāo)題:GPT-4拿下最難數(shù)學(xué)推理數(shù)據(jù)集新SOTA!新型Prompting讓大模型推理能力狂升!

文章出處:【微信號:CVer,微信公眾號:CVer】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    OpenAI全新GPT-4o能力炸場!速度快/成本低,能讀懂人類情緒

    ”的意思。GPT-4o文本、推理、編碼能力達到GPT-4 Turbo水平,速度是上一代AI大模型GPT-
    的頭像 發(fā)表于 05-15 00:15 ?7781次閱讀

    【大語言模型:原理與工程實踐】揭開大語言模型的面紗

    大語言模型(LLM)是人工智能領(lǐng)域的尖端技術(shù),憑借龐大的參數(shù)量和卓越的語言理解能力贏得了廣泛關(guān)注。它基于深度學(xué)習(xí),利用神經(jīng)網(wǎng)絡(luò)框架來理解和生成自然語言文本。這些模型通過訓(xùn)練海量的文本數(shù)據(jù)
    發(fā)表于 05-04 23:55

    壓縮模型會加速推理嗎?

    你好我使用 STM32CUBE-AI v5.1.2 ApplicationTemplate 將簡單的 CNN 導(dǎo)入到 STM32L462RCT我發(fā)現(xiàn)壓縮模型推理時間沒有影響。aiRun 程序在 8
    發(fā)表于 01-29 06:24

    HarmonyOS:使用MindSpore Lite引擎進行模型推理

    使用 MindSpore Lite 推理引擎進行模型推理的通用開發(fā)流程。 基本概念 在進行開發(fā)前,請先了解以下概念。 張量 :它與數(shù)組和矩陣非常相似,是 MindSpore Lite 網(wǎng)絡(luò)運算中的基本
    發(fā)表于 12-14 11:41

    全新科學(xué)問答數(shù)據(jù)ScienceQA深度學(xué)習(xí)模型推理有了思維鏈

    和艾倫人工智能研究院(AI2)提出了首個標(biāo)注詳細解釋的多模態(tài)科學(xué)問答數(shù)據(jù) ScienceQA,用于測試模型的多模態(tài)推理能力。在 Scie
    的頭像 發(fā)表于 11-01 16:30 ?1335次閱讀

    深度:構(gòu)建GPT-4模型,如何商業(yè)落地?

    GPT-4引發(fā)海量算力需求,把握算力產(chǎn)業(yè)鏈機會。根據(jù)測算,我們認(rèn)為,在中性假設(shè)下,ChatGPT一年產(chǎn)生的API調(diào)用費用約為6.2億美元,與此同時,ChatGPT將在訓(xùn)練和推理層面對GPU產(chǎn)生巨大需求。
    的頭像 發(fā)表于 05-06 11:24 ?1149次閱讀
    深度:構(gòu)建<b class='flag-5'>GPT-4</b><b class='flag-5'>模型</b>,如何商業(yè)落地?

    華為諾亞提出新型Prompting (PHP),GPT-4拿下最難數(shù)學(xué)推理數(shù)據(jù)SOTA

    結(jié)果表明,GP-T-4+PHP 在多個數(shù)據(jù)上取得了 SOTA 結(jié)果,包括 SVAMP (91.9%), AQuA (79.9%), GSM8K (95.5%) 以及 MATH (53
    的頭像 發(fā)表于 05-15 09:23 ?1029次閱讀
    華為諾亞提出<b class='flag-5'>新型</b><b class='flag-5'>Prompting</b> (PHP),<b class='flag-5'>GPT-4</b><b class='flag-5'>拿下</b><b class='flag-5'>最難</b><b class='flag-5'>數(shù)學(xué)</b><b class='flag-5'>推理</b><b class='flag-5'>數(shù)據(jù)</b><b class='flag-5'>集</b>新<b class='flag-5'>SOTA</b>

    GPT-4模型結(jié)構(gòu)和訓(xùn)練方法

    GPT-4 的發(fā)布報道上,GPT-4 的多模態(tài)能力人印象深刻,它可以理解圖片內(nèi)容給出圖片描述,甚至能在圖片內(nèi)容的基礎(chǔ)上理解其中的隱喻或推斷下一時刻的發(fā)展。
    的頭像 發(fā)表于 05-22 15:21 ?2590次閱讀
    <b class='flag-5'>GPT-4</b> 的<b class='flag-5'>模型</b>結(jié)構(gòu)和訓(xùn)練方法

    基準(zhǔn)數(shù)據(jù)(CORR2CAUSE)如何測試大語言模型(LLM)的純因果推理能力

    ? 因果推理是人類智力的標(biāo)志之一。因果關(guān)系NLP領(lǐng)域近年來引起了人們的極大興趣,但其主要依賴于從常識知識中發(fā)現(xiàn)因果關(guān)系。本研究提出了一個基準(zhǔn)數(shù)據(jù)(CORR2CAUSE)來測試大語言模型
    的頭像 發(fā)表于 06-20 15:39 ?1767次閱讀
    基準(zhǔn)<b class='flag-5'>數(shù)據(jù)</b><b class='flag-5'>集</b>(CORR2CAUSE)如何測試大語言<b class='flag-5'>模型</b>(LLM)的純因果<b class='flag-5'>推理</b><b class='flag-5'>能力</b>

    爆了!GPT-4模型架構(gòu)、訓(xùn)練成本、數(shù)據(jù)信息都被扒出來了

    文章稱,他們從許多來源收集了大量有關(guān) GPT-4 的信息,包括模型架構(gòu)、訓(xùn)練基礎(chǔ)設(shè)施、推理基礎(chǔ)設(shè)施、參數(shù)量、訓(xùn)練數(shù)據(jù)組成、token 量、
    的頭像 發(fā)表于 07-12 14:16 ?778次閱讀
    爆了!<b class='flag-5'>GPT-4</b><b class='flag-5'>模型</b>架構(gòu)、訓(xùn)練成本、<b class='flag-5'>數(shù)據(jù)</b><b class='flag-5'>集</b>信息都被扒出來了

    GPT-4沒有推理能力嗎?

    今年三月,OpenAI 重磅發(fā)布了 GPT-4模型,帶來了比 ChatGPT 背后 GPT-3.5 更強的推理、計算、邏輯能力,也引發(fā)了
    的頭像 發(fā)表于 08-11 14:20 ?872次閱讀
    <b class='flag-5'>GPT-4</b>沒有<b class='flag-5'>推理</b><b class='flag-5'>能力</b>嗎?

    全球最強大模型易主,GPT-4被超越

    近日,AI領(lǐng)域的領(lǐng)軍企業(yè)Anthropic宣布推出全新的Claude 3系列模型,其中包括最強版Claude 3 Opus。據(jù)該公司稱,Claude 3系列在推理、數(shù)學(xué)、編碼、多語言理解和視覺方面全面超越了包括
    的頭像 發(fā)表于 03-05 09:58 ?622次閱讀

    商湯科技發(fā)布5.0多模態(tài)大模型,綜合能力全面對標(biāo)GPT-4 Turbo

    商湯科技發(fā)布5.0多模態(tài)大模型,綜合能力全面對標(biāo)GPT-4 Turbo 4月23日,商湯科技董事長兼CEO徐立在2024商湯技術(shù)交流日上發(fā)布了行業(yè)首個云、端、邊全棧大
    的頭像 發(fā)表于 04-24 16:49 ?1069次閱讀

    商湯科技推出6000億參數(shù)大模型,全力對標(biāo)GPT-4 Turbo?

    稍晚些時候,商湯科技發(fā)布公告稱,4月23日在上海臨港AIDC舉辦技術(shù)交流日活動,推出了6000億參數(shù)大模型(日日新5.0),其知識、數(shù)學(xué)推理和代碼
    的頭像 發(fā)表于 04-25 10:11 ?375次閱讀

    OpenAI即將發(fā)布“草莓”推理模型

    科技界迎來新動態(tài),據(jù)可靠消息透露,OpenAI正緊鑼密鼓地籌備著一項重大發(fā)布——預(yù)計在兩周內(nèi),將正式推出名為“草莓”的新型AI推理模型,并將其無縫融入ChatGPT服務(wù)中。這款以卓越推理能力
    的頭像 發(fā)表于 09-11 16:53 ?484次閱讀