精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

NLP / LLMs中的Temperature是什么?

冬至子 ? 來源:Lazy Programmer ? 作者:Lazy Programmer ? 2023-05-24 17:12 ? 次閱讀

Temperature 在模型中的作用

Temperature 是一個超參數,可用于控制生成語言模型中生成文本的隨機性和創造性。它用于調整模型的softmax輸出層中預測詞的概率。溫度參數定義為在應用 softmax 函數之前用于調整 logits 的比例因子的倒數。

當Temperature 設置為較低的值時,預測詞的概率會變尖銳,這意味著選擇最有可能的詞的概率更高。這會產生更保守和可預測的文本,因為模型不太可能生成意想不到或不尋常的詞。另一方面,當Temperature 設置為較高值時,預測詞的概率被拉平,這意味著所有詞被選擇的可能性更大。這會產生更有創意和多樣化的文本,因為模型更有可能生成不尋常或意想不到的詞。

溫度參數通常設置為 0.1 到 1.0 之間的值,具體取決于生成文本中所需的隨機性和創造性水平。溫度值為 1.0 對應于標準 softmax 函數,其中預測詞的概率未按比例縮放。

一般來說,Temperature 越低,GPT-3越有可能選擇出現概率較高的單詞。當我們想要GPT-3解釋概念時,它特別有用,因為答案只有一個。如果想要產生想法或完成一個故事,Temperature 設置的更大會給我們帶來更多的多樣性。

比如說以下提示:

Prompt: “The quick brown fox”

Temperature = 0.1:

“The quick brown fox jumped over the lazy dog. The quick brown fox jumped over the lazy dog. The quick brown fox jumped over the lazy dog.”

Temperature = 0.5:

“The quick brown fox jumped over the lazy dog. The lazy cat was not impressed. The quick brown fox ran away.”

Temperature = 1.0:

“The quick brown fox jumped over the lazy dog. Suddenly, a flock of birds flew overhead, causing the fox to stop in its tracks. It looked up at the sky, wondering where they were going.”

可以看到,Temperature 對生成文本的質量和創造性有重大影響。低值生成更可預測和重復的文本,而高值生成更多樣化和創造性的文本。

Temperature 的數學原理解釋

神經網絡的輸出是詞匯表中每個單詞(實際上是標記)的概率分布,告訴它這些單詞中任何一個可能跟隨輸入文本的可能性。

該概率分布由softmax函數計算:

如果將Temperature 參數(T)添加到softmax函數,則公式如下:

更深入的解釋Temperature 參數:

如果當T趨于無窮時會發生什么。每個x_i / T都會趨于0,從而得到一個均勻分布。也就是說概率分布變得更 “平”, 這會導致結果更隨機。

當T很小(比如0.1)時會發生什么。每個x_i / T之間的差異變得更加明顯(例如5比1變成50比10),這樣概率分布變得“更尖”,也就是說結果會更確定。

總結

Temperature 參數是語言生成模型中一個重要的超參數,可用于控制生成文本的隨機性和創造性。通過調整該參數,可以生成更保守或更有創意的文本,雖然Temperature 參數是生成高質量文本的強大工具,但需要注意的是,它并不能提高生成語言模型的性能。因為生成文本的質量高度依賴于訓練數據的質量、模型的架構以及其他超參數,如學習率和批處理大小。在設計和訓練生成語言模型時,必須考慮所有這些因素。

另外就是Temperature 參數可能并不總是提高生成文本的質量,特別是在訓練數據有限或有噪聲的情況下。在這種情況下,其他技術,如數據增強、正則化或遷移學習可能更有效地提高模型的性能。

最后Temperature 可以控制語言生成模型的行為。通過適當的調整,可以得到我們期望的結果。比如說生成更確定的答案可以降低該值,而生成更發散和創造性的答案可以提高該值,所以嘗試一下不同的值,看看這些更改對不的提示有什么影響,這會幫助我們更好的獲得想要的結果。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • Temperature
    +關注

    關注

    0

    文章

    62

    瀏覽量

    62405
  • LLM
    LLM
    +關注

    關注

    0

    文章

    273

    瀏覽量

    306
收藏 人收藏

    評論

    相關推薦

    NLP的面試題目

    NLP面試題目6-10
    發表于 05-21 15:02

    NLP的tfidf作詞向量

    NLP之tfidf作詞向量
    發表于 06-01 17:28

    High Temperature (HT) Manageme

    High Temperature (HT) Management Program at ON Semiconductor Push to higher junction temperature
    發表于 04-16 11:10 ?8次下載

    Measuring Temperature with the

    Measuring Temperature with the MAX1358 Data Acquisition System Abstract: This application note
    發表于 09-19 16:13 ?1324次閱讀
    Measuring <b class='flag-5'>Temperature</b> with the

    Distributed Temperature Sensin

    Abstract: Systems with multiple "hot spots" often require several temperature sensors
    發表于 04-18 10:57 ?1395次閱讀
    Distributed <b class='flag-5'>Temperature</b> Sensin

    NLP的介紹和如何利用機器學習進行NLP以及三種NLP技術的詳細介紹

    本文用簡潔易懂的語言,講述了自然語言處理(NLP)的前世今生。從什么是NLP到為什么要學習NLP,再到如何利用機器學習進行NLP,值得一讀。這是該系列的第一部分,介紹了三種
    的頭像 發表于 06-10 10:26 ?7.7w次閱讀
    <b class='flag-5'>NLP</b>的介紹和如何利用機器學習進行<b class='flag-5'>NLP</b>以及三種<b class='flag-5'>NLP</b>技術的詳細介紹

    NLP的深度學習技術概述

    該項目是對基于深度學習的自然語言處理(NLP)的概述,包括用來解決不同 NLP 任務和應用的深度學習模型(如循環神經網絡、卷積神經網絡和強化學習)的理論介紹和實現細節,以及對 NLP 任務(機器翻譯、問答和對話系統)當前最優結果
    的頭像 發表于 03-01 09:13 ?4769次閱讀
    <b class='flag-5'>NLP</b><b class='flag-5'>中</b>的深度學習技術概述

    關于“NLP的遷移學習”的教程

    這些改進,加上這些方法的廣泛可用性和易集成性,使人們想起了導致計算機視覺預訓練字嵌入和ImageNet預訓練成功的因素,并表明這些方法很可能成為NLP的一種常用工具以及一個重要的研究方向。
    的頭像 發表于 06-23 10:11 ?2401次閱讀
    關于“<b class='flag-5'>NLP</b><b class='flag-5'>中</b>的遷移學習”的教程

    NLP 2019 Highlights 給NLP從業者的一個參考

    自然語言處理專家elvis在medium博客上發表了關于NLP在2019年的亮點總結。對于自然語言處理(NLP)領域而言,2019年是令人印象深刻的一年。在這篇博客文章,我想重點介紹一些我在
    的頭像 發表于 09-25 16:56 ?1694次閱讀

    金融市場NLP 情感分析

    的機器學習,而不是使用深層神經網絡。 2018年,在一些NLP任務,一種名為BERT的最先進(STOA)模型的表現超過了人類的得分。在這里,我將幾個模型應用于情緒分析任務,以了解它們在我所處的金融市場中有多大用處。代碼在jupyter notebook
    的頭像 發表于 11-02 16:18 ?1949次閱讀

    知識圖譜是NLP的未來嗎?

    我的看法:知識圖譜不是NLP的未來,因為知識圖譜是另外一種與NLP有很多交集的技術。在目前所有已知的發展方向,知識圖譜是最有可能長期和NLP互利共生的技術。
    的頭像 發表于 04-15 14:36 ?3669次閱讀
    知識圖譜是<b class='flag-5'>NLP</b>的未來嗎?

    LLMs時代進行無害性評估的基準解析

    隨著對LLMs的不斷應用,大家也發現了諸多問題。比如常見的幻覺現象,LLMs可喜歡一本正經地說著胡話呢。除此之外,LLMs也有可能生成一些歧視某些身份群體的內容,還有一些傷害我們小小心靈的有毒內容(這可不行)。
    發表于 01-05 14:14 ?361次閱讀
    <b class='flag-5'>LLMs</b>時代進行無害性評估的基準解析

    大語言模型(LLMs)如何處理多語言輸入問題

    研究者們提出了一個框架來描述LLMs在處理多語言輸入時的內部處理過程,并探討了模型是否存在特定于語言的神經元。
    發表于 03-07 14:44 ?553次閱讀
    大語言模型(<b class='flag-5'>LLMs</b>)如何處理多語言輸入問題

    RAG系統答案無關片段對LLMs生成結果的影響分析

    與常見語義無關的答案無關片段相比,LLMs更容易受到高度語義相關的答案無關片段的影響;
    發表于 04-15 09:49 ?347次閱讀
    RAG系統<b class='flag-5'>中</b>答案無關片段對<b class='flag-5'>LLMs</b>生成結果的影響分析

    NLP模型RNN與CNN的選擇

    NLP的應用場景、工作原理、優缺點,以及在選擇時應考慮的關鍵因素,以期為讀者提供一個全面而深入的理解。
    的頭像 發表于 07-03 15:59 ?428次閱讀