精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

MEMS和FOG的精確導航之爭

星星科技指導員 ? 來源:ADI ? 作者:Chris Goodall博士, ? 2023-06-10 16:11 ? 次閱讀

Chris Goodall博士, Sarah Carmichael, 和 Bob Scannell

光纖陀螺儀(FOG)以前曾經是環形激光陀螺儀(RLG)等其他技術的低成本替代品,現在該技術面臨著新的競爭。微機電系統(MEMS)陀螺儀開始搶奪傳統FOG應用的市場份額。具體來說,天線陣列穩定、農業機械控制、常規車輛導航成為MEMS和FOG對峙的戰場。

為了確定用于導航應用的這兩種技術之間的相似點,我們將對選定的高端MEMS陀螺儀與低端FOG陀螺儀進行比較。我們在分析中使用了導航軟件和測試案例作為控制,以確定MEMS是否真正為在戰術導航性能水平上使用做好了準備。

MEMS用于精確導航

過去幾年中,MEMS在導航行業日益受到青睞,因為它提供更好的誤差特性和環境穩定性、更高的帶寬和更出色的g靈敏度,而且嵌入式運算能力的應用日益廣泛,可以運行高級融合和傳感器誤差建模算法。

新的精密慣性導航系統(INS)市場正在形成氣候,MEMS技術也在進入以往被FOG技術主導的市場。從FOG到MEMS技術的一個明顯轉變是天線陣列穩定應用。

機器控制應用也可以得益于MEMS技術的進步。以前,用戶偏好價格30,000美元以上的FOG或RLG導航系統,因為其精確度和可靠性比具有代表性的1,000美元MEMS導航系統高出20倍。低成本MEMS導航系統的改進使很多應用受益極大,精密農業和UGV/UAV/USV便是其中兩個典型的例子。

實時導航硬件

本例中使用的導航系統的設計目的是為電機提供高速率的高度輸出,然后該電機再讓車輛頂棚上的天線陣列達到穩定。天線陣列的用途是維持與地球同步衛星之間的通信

該導航系統用作束帶式INS/GNSS導航器,提供高速率的位置和速度數據。慣性測量單元(IMU)數據以1000 Hz頻率流向導航濾波器,這些數據包用于預測位置、速度和高度。從雙天線獲取的GNSS位置、速度和航向用作對導航濾波器的更新。當GNSS不可用時,則使用磁力計來幫助初始化航向。使用氣壓計來幫助確定高度。

特殊校準程序與導航濾波器并行發生。這些程序校準磁力計、雙天線安裝對準誤差、IMU安裝對準誤差,還校準車輛振動水平以便進行靜態期檢測

該系統可在兩種硬件配置中工作。第一種配置包括兩個FOG(檢測航向和俯仰角)、一個MEMS陀螺儀(檢測滾動)、三軸MEMS加速度計、三軸MEMS磁力計、MEMS氣壓計,傳感器硬件的總物料成本(BOM)約為8,000美元(小批量)。

第二種配置包含三個MEMS陀螺儀(用于檢測所有方位角),以及與前一種配置相同的三軸MEMS加速度計、三軸MEMS磁力計和MEMS氣壓計,總成本約為1,000美元(小批量)。這些系統的價格可能隨著市場條件和訂貨量而波動,但通常而言,FOG的價格比MEMS高出八至十倍。

為此設計選擇的MEMS陀螺儀和加速度計具有在同一價位中非常出色的偏置穩定度、正交性、g靈敏度和帶寬。這種系統的主要限制是帶寬要求高。很多MEMS加速度計提供高帶寬,但MEMS陀螺儀通常僅有100 Hz或更低的帶寬。對于普通車輛導航,這一點還不會產生影響,但此系統是針對需要適應高速率控制的應用設計的。此外還有幾種MEMS陀螺儀提供良好的偏置穩定度,但帶寬降低或噪聲很高。為本系統選擇的MEMS陀螺儀在帶寬和性能之間達到了平衡。表1給出了所選MEMS的實際規格

測量 單位
陀螺儀
帶寬 330 Hz
偏置不穩定度 6.25 deg/hr
角向隨機游動 0.3 deg/sqrt(hr)
g靈敏度 0.009 deg/s/g
加速度計
帶寬 330 Hz
偏置不穩定度 32 μg
速度隨機游動 0.023 m/s/sqrt(hr)

慣性MEMS的采用率處于上升態勢。因此,人們為發展該技術進行了大量投資。

本系統中使用的MEMS陀螺儀采用多核架構,該架構在穩定度、噪聲、線性度和線性g性能之間達到了優化平衡。完全差分四諧振器與片內高性能信號調理密切配合,使得諧振器的必需響應范圍較小,位于高度線性區,并且提供高抗振動性能。

由于MEMS陀螺儀和加速度計集成到多軸IMU中(參見圖1),傳感器的x/y/z正交性可能成為主要誤差源。通常將這種誤差規定為跨軸靈敏度或對準誤差。常見規格是±2%跨軸靈敏度。本系統的IMU具有0.087%的跨軸靈敏度(0.05度正交性)。更重要的是,由于器件特定的校準在出廠前完成,此規格在溫度范圍內有效。對于特定旋轉速率,例如在偏航軸上,正交軸的速率輸出等于CrossAxisSensitivity*YawRate,即使滾動軸和俯仰軸上的實際旋轉為零。2%的跨軸誤差通常會導致除了本有的陀螺儀噪聲之外,還會增加一個數量級的軸外噪聲;而此處IMU的0.087%靈敏度與本有的陀螺儀噪聲水平達到精確平衡。

wKgaomSEMBuAeEUmAAEXZkujcK8024.png

圖1. MEMS IMU配置(ADIS16485)

可用帶寬及其與跨軸相位匹配能力的關系對于多軸設計也至關重要。有些陀螺儀結構帶寬有限,與總降噪有關,而有些結構帶寬有限(通常低于100 Hz)是由于反饋電子器件中使用的傳感器處理導致的。這可能導致通過傳感器信號路徑的相位相關誤差波動增加,特別是在卡爾曼濾波器中。MEMS IMU的可用帶寬為330 Hz,采用嵌入式的可調濾波系統,提供合理平衡的方法,較大程度地減少總誤差源,并通過嵌入式濾波實現系統特定的誤差優化,即便在場中也是如此。

在此MEMS IMU中使用的核心傳感器具有固有的振動抑制能力和線性度,不僅使得它們的性能適合高動態應用,而且還在極端環境條件下具有穩定性和可預測性。

本設計使用的FOG是綜合權衡價格、性能和尺寸這幾種因素選擇的。FOG的帶寬、偏置穩定度和噪聲水平是最終選擇傳感器的決定性因素。表2給出了重要的性能參數。與MEMS相比,FOG具有更好的偏置穩定度,角向隨機游動也有了顯著改進。

性能測量 Value Units
陀螺儀
帶寬 1000 Hz
偏置穩定性 3 deg/hr
角向隨機游動 0.1 deg/sqrt(hr)

導航軟件

實時導航軟件在1,000 Hz下處理解決方案,結合使用傳統的SINS機制和測量更新。測量更新來自多個來源,包括:

GNSS位置和速度

雙天線航向更新

磁力計航向更新

氣壓計高度更新

來自車輛OBDII的可選速度更新

所有更新都用于糾正僅INS解決方案的漂移,但更新本身也可能中斷或不準確。

雙天線航向更新具有良好的精確度,但易受多路徑影響。因此,雙天線航向更新僅在開放天空環境中是可靠的。對于來自GNSS接收器的位置和速度預測,情況同樣如此,也會從SBAS受益。

來自磁力計的航向預測可能由于在校準期間的垂直可觀察性不佳,而受到較大傾斜角的影響。磁力計在含鐵物質周圍也可能不精確,例如在其他車輛旁邊行駛時。因此,磁力計用于在GNSS不可用時幫助初始化系統,或在GNSS長時間中斷時(例如20分鐘)幫助減小航向漂移。

氣壓計用于在GNSS不可用或不精確時幫助獲取高度讀數。速度更新用于在沒有GNSS更新的情況下防止速度漂移,特別是在沿航跡方向。這些速度更新也可幫助減少解決方案的位置不確定性,這有助于抑制不準確的GNSS位置更新。整個導航軟件的設計目的是在任何GNSS條件下提供精確結果。

導航測試

為了正確比較兩個系統,我們設計了三個系統級導航基準測試:

在具有良好GNSS信號的開放天空環境下評估滾動、俯仰和航向的精確性。

GNSS多路徑場景,例如在城市中心區,由于存在高層建筑,GNSS解決方案質量可能不好。本測試的目的是比較濾波位置性能,它也會顯示高度和速度誤差。

僅INS性能測試,旨在評估INS位置漂移,也代表速度和高度性能。

開放天空高度結果

在GPS可用且位于多個衛星的直射范圍內的情況下,兩個系統的定位和速度結果是相似的。方位角(滾動、俯仰和航向)是我們比較的主要導航參數,因為它們在很大程度上是由陀螺儀性能決定的。

FOG MEMS
滾動RMS誤差(度) 0.08 0.10
俯仰RMS誤差(度) 0.08 0.10
航向RMS誤差(度) 0.13 0.14

當GNSS可用時,兩種系統的高度性能幾乎是相同的,但FOG具有大約5%的優勢。

不良信號GNSS定位結果

下一個測試的目標是在存在GNSS多路徑的情況下比較兩個系統。行駛軌跡位于卡爾加里市的中心城區,包括一些很窄的小巷,車行緩慢,同時周圍布滿高層建筑。

現在,性能測試重點包括了定位結果,因為在缺少高質量GNSS測量的情況下,陀螺儀可能對位置性能產生很大影響。此測試結果顯示兩個系統的性能相當。但是,FOG系統高出大約20%至30%。

圖2顯示了僅GPS解決方案的示意圖。在對復雜的中心城區行駛軌跡進行導航時,本測試使用的高精度GPS接收器遇到了嚴重的信號反射。僅GPS解決方案的誤差多達100米。

wKgZomSEMBuAXJG3AAXK36kSplk527.png

圖2. 多路徑下僅使用GPS的結果

紅色的FOG集成解決方案(圖3)清晰顯示中心城區車輛的行駛路徑,精確到10米以內。

wKgaomSEMByAN4U4AAXPKVMIHC0459.png

圖3. FOG/GPS集成解決方案(FOG+GPS為紅色,僅GPS為藍色)

MEMS解決方案在圖4中以綠色顯示,始終在15米之內。該解決方案更易受到不精確GNSS位置更新的影響,因為INS預測的權重較低。

wKgZomSEMB2AXOamAAXTSxfpfz4425.png

圖4. MEMS/GPS集成解決方案(MEMS + GPS為綠色,僅GPS為藍色)

為幫助MEMS解決方案克服不精確的GPS更新,我們使用了額外的傳感器。圖5顯示將OBDII添加到系統以獲取車輛速度。

wKgaomSEMB6AY8t8AAXOBWcPu2k016.png

圖5. MEMS/GPS/OBDII集成解決方案(MEMS + GPS + OBDII為綠色,僅GPS為藍色)

MEMS解決方案始終在10米之內,甚至可能稍優于沒有OBDII的FOG,如圖6中的放大圖所示。

wKgZomSEMB-AfCy7AAWmB5Knw1I397.png

圖6.帶有 OBDII的MEMS(綠色)與沒有OBDII的FOG(紅色)、僅GPS(藍色)比較

僅INS結果:示例和基準

兩個系統之間的最后一項比較是僅INS導航測試。系統使用開放天空GNSS更新進行融合。然后斷開兩個系統的天線連接,持續4.5分鐘,位置漂移用作性能指標。在此時間內行駛的距離約為5500米。

圖7顯示了整個軌跡。藍色直線從右下方延伸至左上方,在右下方GPS斷開連接,在左上方GPS重新連接。

wKgaomSEMCCAHEsKAAXaKnfWv7Y146.png

圖7. 僅INS測試路徑

在這次GNSS中斷期間,FOG系統的運行情況很好,最大漂移為7米,如圖8所示。5分鐘之后,FOG系統的典型漂移性能基準測試結果為25米,因此這次特殊中斷的情況略好于典型性能。

wKgZomSEMCGAWg32AAUw-m9mZFg748.png

圖8. 僅FOG漂移

在沒有GNSS更新的情況下,MEMS系統在4.5分鐘之后的漂移為75米。此類漂移大多為沿航跡誤差,主要是由于加速計導致的。MEMS系統的基準測試結果是在沒有GNSS更新的情況下,5分鐘后的典型漂移為75米,比FOG漂移大三倍左右。

wKgaomSEMCKAOpEkAAUsq2Es-c0170.png

圖9. 僅MEMS漂移

為MEMS系統添加OBDII更新之后,漂移改進至小于10米,與FOG解決方案相當。在沒有GNSS更新的情況下,帶有OBDII的MEMS系統的典型基準性能在5分鐘之后產生大約30米的位置漂移,也與FOG基準結果相當。

wKgZomSEMCOAfWFJAAUtuD44gTQ930.png

圖10. 帶有OBDII的MEMS系統的漂移

結束語

FOG和MEMS兩者相比非常接近,特別是現在MEMS的性能正在接近FOG戰術級性能水平。FOG仍然在性能上具有優勢,但其成本卻比MEMS高出10倍。如果可以使用GNSS,而且應用的目的是在開放天空環境中運行,則MEMS可以取代一些低端FOG。如果應用的目的是在信號不良的GNSS環境中使用,MEMS也可以取代一些FOG 系統,但性能要低20%至30%。

在獨立INS性能方面,FOG仍然具有優勢,但如果應用能夠接收車輛或平臺速度更新,則MEMS系統可以達到與獨立FOG系統相同的性能水平。

隨著MEMS技術的持續進步,以及其他傳感器(例如OBDII)的輔助,MEMS取代FOG技術可能在不久的將來實現。

審核編輯:郭婷

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 傳感器
    +關注

    關注

    2548

    文章

    50740

    瀏覽量

    752143
  • mems
    +關注

    關注

    129

    文章

    3903

    瀏覽量

    190376
  • 陀螺儀
    +關注

    關注

    44

    文章

    780

    瀏覽量

    98589
收藏 人收藏

    評論

    相關推薦

    MEMS陀螺儀系統的精確導航

    電子發燒友網報道(文/李寧遠)現代陀螺儀是一種能夠精確地確定運動物體的方位的儀器,是現代航空,航海,航天和國防工業中廣泛使用的一種慣性導航儀器。光纖陀螺儀FOG一度是環形激光陀螺儀RLG的低成本替代
    的頭像 發表于 10-24 01:11 ?1886次閱讀

    如何利用MEMS進行導航

    利用 MEMS 進行導航
    發表于 05-17 06:17

    采用MEMS優化移動機器人的導航性能

    。在許多情況下,機器人必須能夠自主工作,利用導航系統來監視并控制它從一個位置移到另一個位置。管理位置和運動時的精度是實現有用、可靠的自主工作的關鍵。MEMS(微機電系統)陀螺儀可提供反饋檢測機制,對優化
    發表于 09-02 17:15

    意法半導體推出支持汽車精確定位控制的新款高精度MEMS傳感器

    的供應鏈,執行嚴格的線上篩選質量控制計劃。意法半導體模擬、MEMS和傳感器產品部副總裁Andrea Onetti表示:“意法半導體是車載導航、信息服務系統等汽車非安全用市場第一大MEMS傳感器廠商[1
    發表于 07-17 16:46

    MEMS技術縮短了其與FOG和其它傳統慣性技術的性能差距

    航空電子系統性能演示:借助業界領先的SWAP/成本優勢讓新一代產品更進一步經驗證,該MEMS技術優于FOG慣性技術。最近我們將ADI ADIS16485 MEMS IMU與一款價值3萬美元的傳統
    發表于 10-17 09:43

    MEMSFOG精確導航之爭

    是天線陣列穩定應用。機器控制應用也可以得益于MEMS技術的進步。以前,用戶偏好價格30,000美元以上的FOG或RLG導航系統,因為其精確度和可靠性比具有代表性的1,000美元
    發表于 10-18 10:55

    MEMS助力醫療導航應用

    MS-2393:利用MEMS實現醫療創新
    發表于 09-09 06:31

    INS Face Off MEMSFOG相比

    INS Faceoff:MEMSFOG,InsideGNSS,2012年7月/ 8月
    發表于 09-10 11:02

    電池網址精確導航

    精確導航
    發表于 10-28 15:45 ?475次閱讀

    MEMS器件的低成本微慣性導航系統設計

    設計了一款基于MEMS陀螺和MEMS加速度計的低成本微慣性導航系統。采用“四元數”法進行姿態計算,通過比力變換、積分
    發表于 12-29 15:05 ?2414次閱讀
    <b class='flag-5'>MEMS</b>器件的低成本微慣性<b class='flag-5'>導航</b>系統設計

    MEMSFOG技術之間的戰爭 誰會戰到最后

    光纖陀螺儀(FOG)以前曾經是環形激光陀螺儀(RLG)等其他技術的低成本替代品,現在該技術面臨著新的競爭。微機電系統(MEMS)陀螺儀開始搶奪傳統FOG應用的市場份額。具體來說,天線陣列穩定、農業機械控制、常規車輛
    發表于 04-14 11:04 ?1301次閱讀
    <b class='flag-5'>MEMS</b>和<b class='flag-5'>FOG</b>技術之間的戰爭 誰會戰到最后

    MEMS陀螺儀可否取代光纖陀螺儀技術

    光纖陀螺儀(FOG)以前曾經是環形激光陀螺儀(RLG)等其他技術的低成本替代品,現在該技術面臨著新的競爭。微機電系統(MEMS)陀螺儀開始搶奪傳統FOG應用的市場份額。具體來說,天線陣列穩定、農業機械控制、常規車輛
    發表于 02-24 17:24 ?9505次閱讀
    <b class='flag-5'>MEMS</b>陀螺儀可否取代光纖陀螺儀技術

    高精度電子羅盤精確導航中的應用

    高精度電子羅盤精確導航中的應用 電子羅盤作為飛行器方位測量以及飛行姿態監測的常用設備,廣泛應用于航空航天系統中的各類導航儀器和姿態傳感器中,測量的精度直接會影響到系統的性能。因此高精度電子羅盤在航空
    發表于 03-19 11:28 ?4444次閱讀

    MEMS慣性導航的應用

    無人機、無人車、無人船、機器人等代表性無人系統的智能自主控制是當前自動控制領域的研究熱點,更是提升無人系統自主性和智能化水平的核心技術。自主導航技術利用對應的自主導航系統獲取無人系統自身的位置、速度
    的頭像 發表于 11-19 16:38 ?4180次閱讀

    精密MEMS傳感器來實現新型導航應用

    電子發燒友網站提供《精密MEMS傳感器來實現新型導航應用.pdf》資料免費下載
    發表于 11-24 16:02 ?0次下載
    精密<b class='flag-5'>MEMS</b>傳感器來實現新型<b class='flag-5'>導航</b>應用