摘要:聚偏氟乙烯(PVDF)等聚合物因具有較低的熱導率限制了其使用范圍,添加高導熱填料可以提升聚合物材料的導熱性能,所制備的聚合物基導熱復合材料在熱管理領域具有重要的應用價值。本文采用六方氮化硼納米片(BNNS)和球形氧化鋁(Al2O3)作為導熱填料,通過熱壓的方法制備出 Al2O3-BNNS/PVDF 導熱復合材料。首先,在氯化膽堿(ChCl)與植酸(PA)水溶液組成的綠色溶劑中,高效剝離制備得到厚度 3~5 nm、直徑 1~5 μm 的 BNNS 納米填料。再利用 BNNS、Al2O3雜化填料的協(xié)同作用,采用溶液共混-熱壓的方式制得具有類似豌豆莢結構的導熱復合材料,構建出良好的導熱網(wǎng)絡。當添加 30wt%Al2O3 與 20wt% BNNS 時,復合材料面內熱導率高達 11.54 W/(m·K),垂直熱導率為 5.70 W/(m·K),復合材料的熱導率大幅提升,用作熱界面材料表現(xiàn)出優(yōu)異的散熱性能。關鍵詞:綠色溶劑 氮化硼 剝離 聚偏氟乙烯 導熱性能
隨著 5G 時代的到來,電子器件集成化程度不斷提高,功率密度同步增大,熱量聚集會嚴重影響電子設備的穩(wěn)定性和使用壽命,為進行有效的熱管理,熱界面材料成為研究熱點。聚合物基材料因其耐腐蝕、低成本、電絕緣、易加工等優(yōu)勢,在熱管理領域備受關注。然而,聚合物通常為熱絕緣材料,導熱系數(shù)為 0.1~0.4 W/(m·K),限制了其在熱界面材料中的應用。迄今為止,許多導熱填料如石墨烯、氧化鋁、氮化硼等被用來提高聚合物基復合材料的熱導率。制備高導熱性能的聚合物材料,必須添加大量的導熱填料,易造成導致聚合物自身的流動性和力學強度等性能變劣。通過構建有效的導熱網(wǎng)絡能夠在減少填料用量的同時提升材料導熱性能。例如,SHI 等人以聚多巴胺改性的氮化硼納米片為導熱填料,并將其擔載于聚氨酯開孔泡沫的三維骨架表面,經(jīng)熱壓成型制得雙導熱網(wǎng)絡復合材料。當填料含量為 16.3wt%時,其熱導率達到0.783 W/(m·K)。
WU 等人通過冰模板法使聚多巴胺改性的BNNS與Ag納米粒子形成垂直取向的導熱網(wǎng)絡,澆筑聚二甲基硅氧烷后制得具有良好力學性能的導熱墊片。當添加了 7wt%的 Ag 以及19.6wt%的 BNNS@PDA 時,其熱導率可達 3.23W/(m·K)。WANG 等人采用發(fā)泡后冷凍干燥構筑三維多孔的氮化鋁骨架,浸漬環(huán)氧樹脂后制備復合材料,當 AlN 含量 45.48wt%時,復合材料的熱導率達到 1.00 W/(m·K)。YU 等人采用真空抽濾制備石墨烯/氧化鋁類似豌豆莢三維骨架,通過浸漬環(huán)氧樹脂固化成型導熱復合材料,12.1wt%石墨烯和 42.4wt%氧化鋁填充的復合材料的垂直面熱導率高達 13.3 W/(m·K)。因此,通過構筑導熱填料的三維網(wǎng)絡結構,可以有效提高復合材料的導熱性能。
六方氮化硼(h-BN)具有熱導率高、低介電常數(shù)及良好的絕緣性能,在導熱絕緣熱管理領域具有廣闊的應用空間。將 h-BN 剝離制備成氮化硼納米片(BNNS),不僅可以大幅度提升其熱導率,且大的橫縱比及比表面積有利于其在聚合物基體中形成熱傳導通路。但由于 h-BN 中 B 和 N 原子之間電負性不同,層間存在 lip-lip 相互作用,相比于石墨層間的范德華力更強,因而在剝離制備少層氮化硼納米片方面存在極大的挑戰(zhàn)。目前制備 BNNS 的方法主要有高壓均質剝離、球磨剝離以及液相超聲剝離等自上而下的方法,其中液相超聲因為操作簡單,成本較低而備受關注。近年來,液相超聲所使用的溶劑多為 N,N-二甲基甲酰胺(DMF)、二甲基亞砜(DMSO)以及 N-甲基吡咯烷酮(NMP)等有機溶劑,這些溶劑能夠有效地剝離氮化硼,且能使得氮化硼納米片穩(wěn)定分散,但存在揮發(fā)性大、有毒且污染環(huán)境等問題。
采用綠色溶劑來替代傳統(tǒng)有機溶劑,在保證良好的剝離效果且能穩(wěn)定分散BNNS 的同時,可以實現(xiàn)低成本、低毒性、低污染,具有重要的應用價值。低共熔溶劑是由氫鍵給體和氫鍵受體形成的二元或三元均相物質,其熔點遠低于其中任意單一組分,是一種廉價易得、低毒、可結構設計的綠色溶劑,廣泛應用于電沉積、氣體分離、有機催化以及醫(yī)藥等領域,但其在 h-BN 剝離方面的應用鮮有報道。
本文以氯化膽堿(氫鍵受體)與植酸(氫鍵給體)組成低共熔溶劑對六方氮化硼進行插層剝離,通過調節(jié)摩爾比使得剝離效果最佳。將所得BNNS 與 Al2O3共同用作導熱填料,與 PVDF 進行復合,構建類似豌豆莢結構在基體中形成導熱網(wǎng)絡。通過“導熱填料-網(wǎng)絡結構”協(xié)同提高復合材料的導熱性能。
1實驗材料及方法
1.1 原料
六方氮化硼(h-BN,20-30 μm,丹東日進科技有限公司);植酸(PA,50%水溶液,上海泰坦科技股份有限公司);氯化膽堿(ChCl,純度99%,上海泰坦科技股份有限公司);十二烷基苯磺酸鈉(SDBS,分析純,國藥集團化學試劑有限公司);氧化鋁(Al2O3,200 nm,合肥中航納米技術發(fā)展有限公司);聚偏氟乙烯(PVDF,純度99%,山東西亞化學工業(yè)有限公司);N,N-二甲基甲酰胺(DMF,純度99.8%,上海泰坦科技股份有限公司)。
1.2 Al2O3-BNNS/PVDF復合材料的制備
將總質量為 20 g 的 ChCl、PA 以及去離子水加入燒杯中,其中 ChCl 與 PA 的摩爾比為 4:1,水含量為 50wt%。隨后加入 100 mg SDBS,配置成溶液。同樣地,僅改變 ChCl 與 PA 的摩爾比為 2:1、1:1、1:2 以及 1:4,配制不同的溶劑體系。稱取 80mg h-BN 分散在溶液中,使用細胞粉碎機對其進行超聲處理,調節(jié)功率為 200 W,設置超聲時間 2h,超聲 5s 停 1s,之后以 2000 r/min 轉速離心 10min,取上層清液再次離心(10000 r/min,10 min)獲得 BNNS,用去離子水多次洗滌后,70℃下干燥 24 h 得到 BNNS。
Al2O3-BNNS/PVDF復合材料的制備過程如圖1,樣品的質量配比見表1。所示。具體地,取 195 mg PVDF溶解于 7 mL DMF中,90 mg Al2O3及 15mg BNNS分散到上述聚合物溶液,將所得分散液倒入去離子水中形成沉淀。過濾后將沉淀在70℃下真空干燥24 h。所得復合物在200℃下10 MPa壓力熱壓 2 min,最終得到含有30wt% Al2O3以及5wt%BNNSs 的納米復合材料,命名為Al2O3-BNNS5/PVDF。用同樣的方法制備其他樣品。
表1 Al2O3-六方氮化硼納米片(BNNS)/PVDF復合材料物料配比
圖1 Al2O3-BNNS/PVDF復合材料制備示意圖
1.3 測試方法
使用場發(fā)射掃描電子顯微鏡(SEM,S-4800,日本)觀察氮化硼剝離前后以及復合材料斷面形貌。采用透射電子顯微鏡(TEM,JEM-2100 plus,日本)觀察氮化硼納米片的微觀結構。利用原子力學顯微鏡(AFM,MuLtimode 8,德國)觀察氮化硼納米片的尺寸及厚度。在5°-60°的掃描范圍內以5(°)/min的掃描速度收集X-射線衍射(XRD,D8,德國)圖譜。使用X-射線光電子能譜儀(XPS,Axis supra,英國)對剝離前后的氮化硼的C、H、O 以及N元素的化學狀態(tài)進行分析。將樣品制備成 φ25mm×0.1mm的圓片,利用激光導熱儀(LFA467,德國)測試復合材料熱擴散系數(shù)。使用密度計(DH-120T,日本)測量復合材料密度。利用差示掃描量熱儀(DSC-8000,美國)測試復合材料的比熱。復合材料的熱導率計算如下式所示:
λ= α×Cp×ρ(1)
λ是樣品的熱導率(W/(m·K)),α是樣品的熱擴散系數(shù)(mm2/s),Cp是樣品的比熱容(J/(g·K)),ρ是樣品的密度(g/cm3)。采用紅外熱成像儀(FLIR E6,美國)評價復合材料散熱性能。
2結果與討論
2.1 氯化膽堿-植酸輔助剝離h-BN
本文采用氯化膽堿-植酸形成的低共熔溶劑作為剝離助劑,加入水和表面活性劑控制溶劑體系的黏度和表面張力,對 h-BN 進行超聲剝離。圖 2(a)所示為不同 ChCl-PA 摩爾比時,剝離所得 BNNS 分散液的數(shù)碼照片。分散液放置 3 天后,圖 2(b)所示,隨著 ChCl 含量增加,分散液中 BNNS 沉降現(xiàn)象減弱,BNNS 的水分散穩(wěn)定性越好。不同 ChCl-PA 摩爾比時 h-BN 的剝離效率如圖 2(c)所示,隨著 ChCl摩爾分數(shù)的增加,產率先降低后增加。當 ChCl:PA為 1:4,BNNS 產率最高,但分散穩(wěn)定性較差,放置3 天有明顯沉降。而當 ChCl:PA 為 4:1 時,BNNS 產率約 47%,其分散液穩(wěn)定性較好。溶劑體系的張力測試結果如圖 2(d)所示,在水和表面活性劑含量一定的情況下,改變 ChCl-PA 摩爾比對體系的表面張力影響較小,表面張力約 28.5 mN/m,與 h-BN 的表面能相匹配,使其能夠有效地剝離 h-BN 和穩(wěn)定分散所得 BNNS。
但隨著 ChCl 與 PA 摩爾比不同,PA 表面大量的羥基基團與 h-BN 相互作用強,有利于剝離效率的提高,而 ChCl 所含有的烷基基團有利于 BNNS 的分散穩(wěn)定,故隨著 ChCl 比例的提高,溶劑與 h-BN 相互作用先降低后略微提高,導致剝離效率先降低后提高,而分散穩(wěn)定性逐漸增加。因此,ChCl 與 PA 不同摩爾比時與 h-BN 分子間相互作用力不同,導致不同的剝離效果。
圖 2 不同 ChCl-PA 摩爾比時 h-BN 剝離效果: (a)和(b)分別為 BNNS 分散液放置 3 天前后的數(shù)碼照片,(c) 不同氯化膽堿-植酸摩爾比時的剝離效率,(d) 不同氯化膽堿-植酸摩爾比時溶劑體系的表面張力。
2.2 BNNS的形貌及結構
采用 SEM、TEM、AFM 和 XRD 等手段對剝離前后的氮化硼的形貌和結構進行表征,結果如圖3 所示。圖 3(a)為原始塊狀 h-BN 的 SEM 照片,其橫向尺寸大小在 20-30 μm,厚度約 1-2 μm,呈現(xiàn)出塊狀不規(guī)則形貌。圖 3(b)為剝離所得 BNNS 的 SEM照片,與原始 h-BN 相比,剝離后的 BNNS 橫向尺寸減小到 1-5 μm,厚度明顯減薄,邊緣發(fā)生卷曲。圖 3(c)為所得 BNNS 的 TEM 圖,剝離后的 BNNS薄而透明,徑厚比大。圖 3(d)為 BNNS 的 AFM 照片,其橫向尺寸約 2 μm,厚度 3-5 nm(h-BN 層間距為 0.33 nm[24]),大約有 12-15 層。以上實驗結果均說明了本實驗方法可以綠色、高效制備橫向尺寸微米級以上的薄層 BNNS。
圖 3 h-BN(a)與 BNNS(b)的 SEM 圖片; (c) BNNS 的 TEM 圖片; (d) BNNS 的 AFM 圖片與(e)BNNS 厚度曲線; (f)h-BN 與 BNNS的 XRD 譜圖。
本文利用 XRD 研究 h-BN 與 BNNS 的晶體結構,如圖 3(f)所示。剝離后 BNNS 仍具有良好的結晶結構,但其 002 晶面衍射峰由 h-BN 的 26.75°向低角度偏移至 26.61°,且半峰寬變寬。該結果表明,該綠色溶劑體系成功實現(xiàn)了 h-BN 的插層剝離。
采用 XPS 表征了剝離前后的 h-BN 元素組成和狀態(tài)的變化。表 2 匯總了 h-BN 與 BNNS 的元素含量。原 h-BN 制備過程中殘留有 C、O 元素,剝離后BNNS 中 C、O 元素含量明顯增加,表明 BNNS 表面可能與溶劑體系產生了相互作用,導致元素相對含量發(fā)生變化。
表 2 h-BN 與 BNNS 的 XPS 元素含量分析
圖 4(a)為 h-BN 及 BNNS 的 XPS 全譜,直觀地顯示出 C、O 元素含量上升。圖 4(b)為 B1s 峰的擬合結果,h-BN 和 BNNS 均在 190.4 eV 有一個 B-N 鍵的特征峰,在 191.0 eV 存在屬于 B-O 的特征峰。與 h-BN 相比,BNNS 表面的 B-O 與 B-N的特征峰面積之比明顯增加,進一步表明 BNNS 表面在 B 元素周圍發(fā)生了功能化。功能化的 BNNS 利于與 PVDF 基體發(fā)生相互作用,增加兩相的相容性,從而降低界面熱阻,有利于導熱性能的提高。
圖 4 h-BN 及 BNNS 的 XPS 譜圖:(a) XPS 全譜 (b) B1s 譜圖
2.3 Al2O3-BNNS/PVDF復合材料微觀形貌
圖 5 為 PVDF 及復合材料的斷面 SEM 照片。未填充改性的 PVDF 斷面平滑而致密(圖 5(a)),Al2O3納米粒子的尺寸約 200 nm(圖 5(b))。當基體中填充 30wt% Al2O3時,如圖 5(c)所示,斷面存在大量的 Al2O3顆粒,能形成一定的導熱網(wǎng)絡,但部分 Al2O3納米粒子發(fā)生團聚,Al2O3球周圍有明顯的孔隙,與基體界面結合較弱,不能形成高效的導熱通路。當同時添加 Al2O3和 BNNS 時,復合材料的斷面形貌如圖 5(d-g)所示。在 BNNS 含量較少時,如圖 5(d-e)所示,BNNS 片層之間相距較遠,中間夾雜著大量的 Al2O3,BNNS 納米片將含有 Al2O3的PVDF 基體隔離成連續(xù)相區(qū),Al2O3分布在 PVDF 基體中,是一種典型的隔離結構,這種結構改變了Al2O3在基體中的分布狀態(tài),有利于 Al2O3形成完整的導熱網(wǎng)絡。
同時,在熱壓的作用下,BNNS 部分發(fā)生取向,因此有利于復合材料的熱導率及面內熱導率的提高。但此時復合材料的熱導率主要由 Al2O3決定。當 BNNS 含量逐漸增多時,如圖 5(f-g)所示,面內取向更加明顯,BNNS 相互之間連接形成導熱通路,BNNS 薄片之間由 Al2O3連接,形成類似豌豆莢結構,如圖 1 中所示,BNNS 與 Al2O3協(xié)同作用,構建出更加致密和完善的導熱通路,有利于提高復合材料導熱性能。圖 5(h)為 BNNS20/PVDF 的斷面形貌,在熱壓的作用下 BNNS 在面內形成明顯的取向結構,彼此連接形成面內導熱通路,而在垂直方向上仍存在 PVDF 間隔,未形成有效連通,阻礙熱量的傳導。
圖 5 PVDF 基復合材料脆斷面的 SEM 照片:(a) PVDF、(b) Al2O3、(c) Al2O3/PVDF、(d) Al2O3-BNNS5/PVDF、(e)Al2O3-BNNS10/PVDF、(f) Al2O3-BNNS15/PVDF、(g) Al2O3-BNNS20/PVDF 以及(h) BNNS20/PVDF。
2.4 Al2O3-BNNS/PVDF復合材料導熱性能
對制備的 PVDF 復合材料進行導熱性能測試。表 3 匯總了 PVDF 基導熱復合材料的比熱(Cp)、密度(ρ)以及平面與垂直方向的熱擴散系數(shù)(α)。
表 3Al2O3-BNNS/PVDF 復合材料比熱、密度以及熱擴散系數(shù)
利用公式(1)計算復合材料的熱導率,結果如圖 6 所示。純 PVDF 的熱導率為 0.22 W/(m·K),與文獻報道的一致。當加入 30wt% Al2O3時,面內熱導率提高到 6.11 W/(m·K),隨著 BNNS 含量增加,復合材料的面內和垂直方向的熱導率均有所提高。當 BNNS含量達到 20wt%時,面內熱導率達到最高的 11.54W/(m·K),垂直熱導率增加至 5.70 W/(m·K),這是因為兩種填料協(xié)同作用,并且通過熱壓形成有效的導熱通路。由于熱壓的作用,BNNS 優(yōu)先在水平方向上形成導熱通路,因此當 BNNS 含量在 10wt%以下時,面內熱導率的增加明顯高于垂直方向上的熱導率提升,垂直方向的熱導率仍由 Al2O3決定。
圖 6Al2O3-BNNS/PVDF 復合材料的面內(a)和垂直方向熱導率(b)
當BNNS含量提高到15wt%時,垂直方向熱導率由3.02W/(m·K)增加至 5.15 W/(m·K),提高了 70%,此時,本文所制備的薄而大的 BNNS 納米片與 Al2O3形成豌豆莢結構,有利于制得緊密連接導熱網(wǎng)絡,垂直方向熱導率得到大幅提升。僅填充 BNS 制備的BNNS20/PVDF 在熱壓的作用下能夠形成面內導熱通路,面內熱導率提升至 7.25 W/(m·K),而垂直面上仍缺乏有效的導熱通路,熱導率僅有0.36W/(m·K)。由此可見,Al2O3與 BNNS 雙填料協(xié)同作用,BNNS 片層之間由 Al2O3相互連接,使得材料垂直方向熱導率大幅提升。
表 4 匯總了已報道的 h-BN 或 BNNS 填充的PVDF 復合材料的熱導率。由表 4 可以看出,本工作通過 Al2O3與 BNNS 雙填料填充,設計具有類豌豆莢三維(3D)網(wǎng)絡微觀結構,實現(xiàn)“雙重導熱填料-3D 導熱通路”協(xié)同提高復合材料導熱性能,有望作為熱界面材料應用于器件散熱領域。
表 4 BN 填充 PVDF 導熱復合材料熱導率比較
本文進一步探究了所制備復合材料的散熱性能。圖7(c)為自制的散熱裝置,從上到下為LED燈、復合材料薄膜以及銅塊,圖7(a)為在LED燈開啟狀態(tài)下從25℃開始計時2 min內的LED燈紅外熱成像照片,圖7(b)為LED燈表面溫度隨開燈時間的變化曲線。結果可以看出,隨著開燈時間的延長,LED燈的溫度逐漸升高,90 s后基本達到溫度的平衡;隨著BNNS填料含量的增加,相同升溫時間時,LED燈溫度下降,說明復合材料作為熱界面材料,能夠有效將LED發(fā)光產生的熱傳遞給銅塊,其散熱性能逐步提高。當純PVDF作為熱界面材料時,LED燈2分鐘后溫度為78.5℃,添加30wt% Al2O3后,表面溫度下降到69.5℃,降低了11.5%,這是單一導熱填料Al2O3帶來的效果。
圖 7Al2O3-BNNS/PVDF 復合材料紅外熱成像分析
隨著BNNS填料的加入,LED燈溫度進一步下降,尤其當BNNS含量達到20wt%時,復合材料最終使得LED燈的穩(wěn)定溫度相比純PVDF下降了18℃,降低了22.8%,較單純添加Al2O3帶來的效果提升了一倍。BNNS20/PVDF最終溫度穩(wěn)定在65.3℃,也顯示出較好的散熱能力,這是因為徑厚比大的BNNS通過熱壓在復合材料平面內取向,也可以形成良好的導熱通路。但因其在垂直方向上缺乏良好的導熱路徑,其散熱性能與Al2O3-BNNS10/PVDF相當。
雙填料體系不僅有利于3D導熱網(wǎng)絡的形成,而且有利于導熱填料在基體內的分散性,減少復合材料內部缺陷和納米粒子的聚集,改善復合材料的流動性能,有利于提升熱界面材料的可靠性。因此,本文所構建的豌豆莢型雙填料體系復合材料在“填料-結構”協(xié)同作用下,展現(xiàn)出優(yōu)異的散熱性能,有望作為熱界面材料用于電子器件等散熱領域。
3結論
(1) 利用氯化膽堿與植酸形成的低共熔溶劑代替?zhèn)鹘y(tǒng)有機溶劑實現(xiàn)了六方氮化硼納米片(BNNS)的綠色、高效制備。當氯化膽堿與植酸摩爾比為 4:1時,可制備得到橫向尺寸 1~5 μm,厚度 3~5 nm 的BNNS,剝離效率高達 47.9%。本研究為制備 BNNS提供了一種綠色、高效的新方法。(2) 利用 Al2O3與 BNNS 雙填料的協(xié)同作用,通過構建豌豆莢結構,制備得到導熱性能優(yōu)異的PVDF 基復合材料。當添加 30wt% Al2O3與 20wt%BNNS 時,復合材料的面內熱導率達到 11.54W/(m·K),垂直熱導率達到 5.70 W/(m·K),作為熱界面材料能有效降低電子器件的表面溫度。本研究為制備高導熱界面材料提供了新穎、簡單的途徑。
來源:復合材料學報
作者:石賢斌1,張帥2,陳超2,聶向導1,班露露1,趙亞星1,劉仁1,桑欣欣1
1.江南大學 化學與材料工程學院合成與生物膠體教育部重點實驗室;2.海鷹空天材料研究院(蘇州)有限責任公司
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
材料
+關注
關注
3文章
1191瀏覽量
27233
發(fā)布評論請先 登錄
相關推薦
評論