在從空間成像到生物醫(yī)學(xué)顯微鏡、安全、工業(yè)檢查和文化遺產(chǎn)等眾多領(lǐng)域,對快速、高分辨率和低噪聲3D成像的要求非常高。在這種情況下,傳統(tǒng)的全光成像代表了3D成像領(lǐng)域最有前景的技術(shù)之一,因?yàn)槠涑叩臅r(shí)間分辨率:3D成像是在30M像素分辨率下每秒7幀的單次拍攝中實(shí)現(xiàn)的,對于1M像素分辨率為每秒180幀;無多個(gè)傳感器,近場需要耗時(shí)的掃描或干涉技術(shù)。然而常規(guī)全光成像導(dǎo)致分辨率損失,這通常是不可接受的。
我們打破這種限制的策略包括將一個(gè)全新的和基礎(chǔ)性的采用上一代硬件和軟件解決方案。基本思想是通過使用新型傳感器來利用存儲(chǔ)在光的相關(guān)性中的信息實(shí)現(xiàn)一項(xiàng)非常雄心勃勃的任務(wù)的測量協(xié)議:高速(10–100 fps)量子全光成像(QPI)具有超低噪聲和前所未有的性能分辨率和景深的組合。所開發(fā)的成像技術(shù)旨在:在成為第一個(gè)實(shí)際可用和適當(dāng)?shù)摹傲孔印背上窦夹g(shù)超出了經(jīng)典成像模式的固有限制。
除了基礎(chǔ)感興趣的是,該技術(shù)的量子特性允許在3D上提取信息來自極低光子通量下的光相關(guān)性的圖像,從而減少場景暴露于光照。對QPI的興趣是由潛在的相對于其他已建立的3D成像技術(shù)的優(yōu)點(diǎn)。實(shí)際上,其他與QPI不同,方法需要精細(xì)的干涉測量,如數(shù)字測量全息顯微鏡或相位恢復(fù)算法,如傅里葉全息圖或快速脈沖照明,如飛行時(shí)間(TOF)成像。此外,QPI提供了無掃描顯微鏡模式的基礎(chǔ),克服了共聚焦方法。
量子全光相機(jī)有望提供全光成像的優(yōu)勢,主要是超快和免掃描的 3D 成像和重聚焦能 力,其性能是經(jīng)典相機(jī)無法企及的。最先進(jìn)的全光成像設(shè)備能夠在單次拍攝中獲取多視角圖像.它們的工作原理是基于對給定場景中光的空間分布和傳播方向的同時(shí)測量。獲取的方向信息轉(zhuǎn)化為快速 3D 成像所需的重聚焦能力、可增加的景深(DOF)和多視角 2D 圖像的并行獲取。
在最先進(jìn)的全光照相機(jī)中,方向檢測是通過在標(biāo)準(zhǔn)數(shù)碼相機(jī)的主鏡頭和傳感器之間插 入微透鏡陣列來實(shí)現(xiàn)的。傳感器獲取復(fù)合信息,該復(fù)合信息允許識(shí)別檢測到的光來自 的物點(diǎn)和透鏡點(diǎn)。然而,由于結(jié)構(gòu)(使用微透鏡陣列)和基本(高斯極限)原因,圖像分辨率與獲 得的方向信息成反比地降低;因此,在基于簡單強(qiáng)度測量的設(shè)備中,在衍射極限下的全光成像 被認(rèn)為是無法實(shí)現(xiàn)的。
圖(a)傳統(tǒng)全光成像(PI)設(shè)備的方案:物體的圖像聚焦在微透鏡陣列上,而每個(gè)微透鏡將主透鏡 的圖像聚焦在后面的像素上。這種配置需要與方向分辨率的增益成比例的空間分辨率的損失;(b)顯示了相關(guān)全光成像(CPI)設(shè)置的方案,其中方向信息是通過將物體聚焦的傳感器檢索到的信號(hào)與收集 光源圖像的傳感器相關(guān)聯(lián)而獲得的。
為了實(shí)現(xiàn)全光成像,我們正在尋求一個(gè)超高性能的探測器,一個(gè)相關(guān)部分是通過用基于尖端技術(shù)的傳感器(如單光子雪崩 二極管(SPAD)陣列)取代商用高分辨率傳感器(如科學(xué) CMOS 和 EMCCD 相機(jī))來確定的。SPAD 基本上是一個(gè)光電二極管,其反向偏置電壓高于其擊穿電壓,因此撞擊其光敏區(qū)域的單個(gè) 光子可以產(chǎn)生電子-空穴對,從而觸發(fā)次級(jí)載流子的雪崩,并在非常短的時(shí)間尺度(皮秒) 內(nèi)產(chǎn)生大電流。這種操作方式被稱為蓋革模式。
SPAD輸出電壓由電子電路感測并直接轉(zhuǎn)換成數(shù)字信號(hào),進(jìn)一步處理以存儲(chǔ)光子到達(dá)和/或光子到達(dá)時(shí)間的二進(jìn)制信息。從本質(zhì)上來說,SPAD 可以被看作是一個(gè)具有精密時(shí)間精度的光子-數(shù)字轉(zhuǎn)換裝置。SPADs 也可以選通,以便只在短至幾納秒的時(shí)間窗口內(nèi)敏感。如今,單個(gè) SPAD 可以用作大型陣列的構(gòu)建模塊,每個(gè)像素電路都包含 SPAD 和即時(shí)光子處理邏輯和互連。
有幾種 CMOS 工藝可供選擇,可以定制關(guān)鍵 SPAD 性能指標(biāo)和整體傳感器或成像器架構(gòu).靈敏度和填充因子有一段時(shí)間落后于科學(xué) CMOS 或 EMCCD,但近年來已大幅趕上。
根據(jù) QPI 的要求,我們選擇使用由 EPFL AQUA laboratory group 開發(fā)的 SwisSPAD2 陣列,其特點(diǎn)是 512×512 像素分辨率,這是迄今為止最廣泛、最先進(jìn)的 SPAD 陣列之一。傳感器內(nèi)部由 256×512 像素的兩半組成,以減少信號(hào)線上的負(fù)載和偏斜,實(shí)現(xiàn)更快的操作。這是一個(gè)純粹的二進(jìn)制門控成像器,即每個(gè)像素為每幀記錄 0(無光子)或 1(一個(gè)或多個(gè)光子),讀出噪聲基本為零。傳感器由 FPGA 控制,F(xiàn)PGA 產(chǎn)生門控電路和讀出 序列的控制信號(hào),并收集像素檢測結(jié)果。在 FPGA 中,在發(fā)送到計(jì)算機(jī)/GPU 進(jìn)行分析和存儲(chǔ)之前,可以進(jìn)一步處理得到的一位圖像,例如,累積成多位圖像。對于準(zhǔn)直光,通過微透鏡陣列,最大幀速率為 97.7 kfps,10.5%的自然填充因子可以提高 4-5 倍 (優(yōu)化后的 模擬預(yù)計(jì)會(huì)有更高的值);在 520 納米(700 納米)和 6.5 伏過量偏壓下,光子探測概率為 50% (25%)。該器件還具有低噪聲(室溫下每像素平均暗計(jì)數(shù)率通常低于 100 cps,中值約低 10 倍)和先進(jìn)的納秒門控電路。
SwissSPAD2 門窗口輪廓。圖中標(biāo)注了轉(zhuǎn)換時(shí)間和柵極寬度。柵極寬度可由用戶編程,內(nèi)部激光觸發(fā)模式下的最小柵極寬度為 10.8 ns。
SwissSPAD2 顯微照片(左)和像素示意圖(右)。像素由 11 個(gè) NMOS 晶體管組成,7 個(gè)具有厚氧化 物,4 個(gè)具有薄氧化物柵極。像素在其存儲(chǔ)電容器中存儲(chǔ)二進(jìn)制光子計(jì)數(shù)。像素內(nèi)門定義了相對于 20 MHz 外部觸發(fā)信號(hào)的時(shí)間窗口,其中像素對光子敏感。
全光相機(jī)是一種全新的 3D 成像設(shè)備,利用動(dòng)量-位置糾纏和光子數(shù)相關(guān)性來提供全光設(shè)備典型的重新聚焦和超快速、免掃描的 3D 成像能力,以及標(biāo)準(zhǔn)全光相機(jī)無法實(shí)現(xiàn)的顯著增強(qiáng)的性能:衍射極限分辨率、大焦深和超低噪聲;然而,為了使所提出的器件的量子優(yōu)勢有效并吸引最終用戶,需要解決兩個(gè)主要挑戰(zhàn)。
首先,由于相關(guān)測量需要大量的幀 來提供可接受的信噪比,如果用商業(yè)上可獲得的高分辨率相機(jī)來實(shí)現(xiàn),量子全光成像(QPI)將需要幾十秒到幾分鐘的采集時(shí)間。第二,為了檢索 3D 圖像或重新聚焦 2D 圖像,對這大量數(shù)據(jù)的加工需要高性能和耗時(shí)的計(jì)算。為了應(yīng)對這些挑戰(zhàn),我們正在開發(fā)高分辨率單光子雪崩光電二極管(SPAD)陣列和超快速電子設(shè)備的高性能低級(jí)編程,結(jié)合壓縮傳感和量子層析成像算法,旨在將采集和加工時(shí)間減少兩個(gè)數(shù)量級(jí)。還將討論開發(fā) QPI 設(shè)備的途徑。
如下為昊量光電SPAD512S相機(jī)參數(shù),看后你將對全光成像有新的了解及認(rèn)識(shí)。
-
傳感器
+關(guān)注
關(guān)注
2548文章
50740瀏覽量
752143 -
3D成像
+關(guān)注
關(guān)注
0文章
98瀏覽量
16045
發(fā)布評(píng)論請先 登錄
相關(guān)推薦
評(píng)論