點擊藍字關注我們
IGBT晶體管的結構要比 MOSFET 或雙極結型晶體管 (BJT) 復雜得多。它結合了這兩種器件的特點,并且有三個端子:一個柵極、一個集電極和一個發射極。就柵極驅動而言,該器件的行為類似于 MOSFET。它的載流路徑與 BJT 的集電極-發射極路徑非常相似。圖 1 顯示了 n 型 IGBT 的等效器件電路。
圖 1. IGBT的等效電路
原版文檔獲取點擊文末的“贊”和“在看”,并發送截圖和您的郵箱地址到后臺,即可領取原版文檔哦~
一了解基本驅動器圖 2. IGBT的導通電流
為了快速導通和關斷 BJT,必須在每個方向上硬驅動柵極電流,以將載流子移入和移出基極區。當 MOSFET 的柵極被驅動為高電平時,會存在一個從雙極型晶體管的基極到其發射極的低阻抗路徑。這會使晶體管快速導通。因此,柵極電平被驅動得越高,集電極電流開始流動的速度就會越快。基極和集電極電流如圖 2 所示。
圖 3. IGBT的關斷電流
關斷場景有點不同,如圖 3 所示。當 MOSFET 的柵極電平被拉低時,BJT 中將沒有基極電流的電流路徑。基極電流的缺失會誘發關斷過程;不過,為了快速關斷,應強制電流進入基極端子。由于沒有可用的機制將載流子從基極掃走,因此 BJT 的關斷相對較慢。這導致了一種被稱為尾電流的現象,因為基極區中存儲的電荷必須被發射極電流掃走。
很明顯,更快的柵極驅動 dv/dt 速率(源于更高的柵極電流能力)將會更快地接通和關斷 IGBT,但對于器件的開關速度(特別是關斷速度)而言,是存在固有限制的。正是由于這些限制,開關頻率通常在 20kHz 至 50kHz 范圍內,盡管在特殊情況下它們也可以用于更快和更慢的電路。IGBT 通常用于諧振和硬開關拓撲中的高功率 (Po > 1 kW) 電路。諧振拓撲最大程度降低了開關損耗,因為它們要么是零電壓開關,要么是零電流開關。
較慢的 dv/dt 速率可以提高 EMI 性能(當涉及這方面問題時),并在導通和關斷轉換期間減少尖峰的形成。這是以降低效率為代價的,因為此時導通和關斷的時間會比較長。
二二次導通MOSFET 存在一種稱為二次導通的現象。這是由于漏電壓的 dv/dt 速率非常快,其范圍可以在 1000–10000 V/us 之間。盡管 IGBT 的開關速度通常不如 MOSFET 快,但由于所使用的是高電壓,因此它們仍然可以遭遇非常高的 dv/dt 電平。如果柵極電阻過高,就會導致二次導通。
圖 4. 帶有寄生電容的IGBT
在這種情況下,當驅動器將柵極電平拉低時,器件開始關斷,但由于 Cgc 和 Cge 分壓器的原因,集電極上的電壓升高會在柵極上產生電壓。如果柵極電阻過高,柵極電壓可升高到足以使器件重新導通。這將導致大功率脈沖,從而可能引發過熱,在某些情況下甚至會損壞器件。
該問題的限制公式為:
[參考文獻1](公式1)
其中,- dv/dt 為關斷時集電極上電壓波形上升的速率
- 為柵極的平臺電平
- Rg為總柵極電阻
- Cgc 為柵極-發射極電容
(公式2)
因此,最大總柵極電阻為:
(公式3)
最大 dv/dt 是基于柵極驅動電流以及 IGBT 周圍的電路阻抗。如果將高值電阻器用于柵極驅動,則需要在實際電路中進行驗證。圖 5 顯示了同一電機控制電路中三個不同 IGBT 的關斷波形。在此應用中,dv/dt 為 3500 V/s。
圖 5. 三個IGBT的關斷波形
對于該情況而言,IGBT #2 的典型 Cgc 為 84 pF,而閾值柵極電壓為 7.5 V(在 15 A 的條件下)。
利用上述公式,該電路的最大總柵極電阻為:
(公式4)
Rg < 25.5 Ω。
因此,如果內部柵極電阻為 2Ω,驅動器阻抗為 5Ω,則所使用的絕對最大柵極電阻應為 18Ω。實際上,由于 IGBT、驅動器、板阻抗和溫度的變化,建議采用一個較小的最大值(例如 12Ω)。
圖 6. 等效柵極驅動電路
三柵極振鈴去除外部柵極電阻器可能會獲得最佳的高頻性能,同時確保不會發生二次導通。在某些情況下,這可能會起作用,但也可能由于柵極驅動電路中的阻抗而導致振蕩。
柵極驅動電路為串聯 RLC 諧振電路。電容主要源于 IGBT 寄生電容。所示的兩個電感則源自 IGBT 和驅動器的板走線電感與焊線電感的組合。
在柵極電阻很小或沒有柵極電阻的情況下,諧振電路將會振蕩并造成 IGBT 中的高損耗。此時需要有足夠大的柵極電阻來抑制諧振電路,從而消除振蕩。
由于電感難以測量,因此也就很難計算適合的電阻。要最大程度降低所需的最小柵極電阻,最佳方案是采用良好的布局程序。
驅動器與 IGBT 柵極之間的路徑應盡可能短。這適用于柵極驅動的整個電路路徑以及接地回路路徑。如果控制器不包括集成驅動器,則將 IGBT 驅動器置于 IGBT 的柵極附近要比將柵極驅動器的輸入置于控制器的 PWM 輸出端更為重要。從控制器到驅動器的電流非常小,因此相比從驅動器到 IGBT 的高電流和高 di/dt 電平所造成的影響,任何雜散電容的影響都要小得多。短而寬的走線是最大程度降低電感的最佳方式。
典型的最小驅動器電阻范圍為 2Ω至 5Ω。這其中包括驅動器阻抗、外部電阻值和內部 IGBT 柵極電阻值。一旦設計好板的布局,即可確定并優化柵極電阻值。
四總結本文給出了最大和最小柵極電阻值的指南。在這些限值之間有一個取值范圍,藉此可以對電路進行調諧,從而獲得最大效率、最小 EMI 或其他重要參數。在電路設計中取一個介于這些極值之間的安全值可確保設計的穩健。
參考文獻
[1]《Power Semiconductor Devices》(功率半導體器件),B. Jayant Baliga,PWS Publishing Company,Boston。ISBN 0?534?94098?6
原版文檔獲取點擊文末的“贊”和“在看”,并發送截圖和您的郵箱地址到后臺,即可領取原版文檔哦~
點個星標,茫茫人海也能一眼看到我
「點贊、在看,記得兩連~」
原文標題:干貨碼住丨深度剖析 IGBT 柵極驅動注意事項
文章出處:【微信公眾號:安森美】歡迎添加關注!文章轉載請注明出處。
-
安森美
+關注
關注
32文章
1648瀏覽量
91937
原文標題:干貨碼住丨深度剖析 IGBT 柵極驅動注意事項
文章出處:【微信號:onsemi-china,微信公眾號:安森美】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論