精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)和功能

jf_pJlTbmA9 ? 來源:jf_pJlTbmA9 ? 作者:jf_pJlTbmA9 ? 2023-07-10 10:20 ? 次閱讀

摘要

本文是系列文章的第二部分,重點(diǎn)介紹卷積神經(jīng)網(wǎng)絡(luò)(CNN)的特性和應(yīng)用。CNN主要用于模式識別和對象分類。在第一部分文章《卷積神經(jīng)網(wǎng)絡(luò)簡介:什么是機(jī)器學(xué)習(xí)?——第一部分》中,我們比較了在微控制器中運(yùn)行經(jīng)典線性規(guī)劃程序與運(yùn)行CNN的區(qū)別,并展示了CNN的優(yōu)勢。我們還探討了CIFAR網(wǎng)絡(luò),該網(wǎng)絡(luò)可以對圖像中的貓、房子或自行車等對象進(jìn)行分類,還可以執(zhí)行簡單的語音識別。本文重點(diǎn)解釋如何訓(xùn)練這些神經(jīng)網(wǎng)絡(luò)以解決實(shí)際問題。

神經(jīng)網(wǎng)絡(luò)的訓(xùn)練過程

本系列文章的第一部分討論的CIFAR網(wǎng)絡(luò)由不同層的神經(jīng)元組成。如圖1所示,32 × 32像素的圖像數(shù)據(jù)被呈現(xiàn)給網(wǎng)絡(luò)并通過網(wǎng)絡(luò)層傳遞。CNN處理過程的第一步就是提取待區(qū)分對象的特性和結(jié)構(gòu),這需要借助濾波器矩陣實(shí)現(xiàn)。設(shè)計(jì)人員對CIFAR網(wǎng)絡(luò)進(jìn)行建模后,由于最初無法確定這些濾波器矩陣,因此這個(gè)階段的網(wǎng)絡(luò)無法檢測模式和對象。

為此,首先需要確定濾波器矩陣的所有參數(shù),以最大限度地提高檢測對象的精度或最大限度地減少損失函數(shù)。這個(gè)過程就稱為神經(jīng)網(wǎng)絡(luò)訓(xùn)練。本系列文章的第一部分所描述的常見應(yīng)用在開發(fā)和測試期間只需對網(wǎng)絡(luò)進(jìn)行一次訓(xùn)練就可以使用,無需再調(diào)整參數(shù)。如果系統(tǒng)對熟悉的對象進(jìn)行分類,則無需額外訓(xùn)練;當(dāng)系統(tǒng)需要對全新的對象進(jìn)行分類時(shí),才需要額外進(jìn)行訓(xùn)練。

進(jìn)行網(wǎng)絡(luò)訓(xùn)練需要使用訓(xùn)練數(shù)據(jù)集,并使用類似的一組測試數(shù)據(jù)集來測試網(wǎng)絡(luò)的精度。例如CIFAR-10網(wǎng)絡(luò)數(shù)據(jù)集為十個(gè)對象類的圖像集合:飛機(jī)、汽車、鳥、貓、鹿、狗、青蛙、馬、輪船和卡車。我們必須在訓(xùn)練CNN之前對這些圖像進(jìn)行命名,這也是人工智能應(yīng)用開發(fā)過程中最為復(fù)雜的部分。本文討論的訓(xùn)練過程采用反向傳播的原理,即向網(wǎng)絡(luò)連續(xù)展示大量圖像,并且每次都同時(shí)傳送一個(gè)目標(biāo)值。本例的目標(biāo)值為圖像中相關(guān)的對象類。在每次顯示圖像時(shí),濾波器矩陣都會被優(yōu)化,這樣對象類的目標(biāo)值就會和實(shí)際值相匹配。完成此過程的網(wǎng)絡(luò)就能夠檢測出訓(xùn)練期間從未看到過的圖像中的對象。

1681808509479191.png

圖1.CIFAR CNN架構(gòu)。

1681808506954709.png

圖2.由前向傳播和反向傳播組成的訓(xùn)練循環(huán)。

過擬合和欠擬合

在神經(jīng)網(wǎng)絡(luò)的建模過程中經(jīng)常會出現(xiàn)的問題是:神經(jīng)網(wǎng)絡(luò)應(yīng)該有多少層,或者是神經(jīng)網(wǎng)絡(luò)的濾波器矩陣應(yīng)該有多大。回答這個(gè)問題并非易事,因此討論網(wǎng)絡(luò)的過擬合和欠擬合至關(guān)重要。過擬合由模型過于復(fù)雜以及參數(shù)過多而導(dǎo)致。我們可以通過比較訓(xùn)練數(shù)據(jù)集和測試數(shù)據(jù)集的損失來確定預(yù)測模型與訓(xùn)練數(shù)據(jù)集的擬合程度。如果訓(xùn)練期間損失較低并且在向網(wǎng)絡(luò)呈現(xiàn)從未顯示過的測試數(shù)據(jù)時(shí)損失過度增加,這就強(qiáng)烈表明網(wǎng)絡(luò)已經(jīng)記住了訓(xùn)練數(shù)據(jù)而不是在實(shí)施模式識別。此類情況主要發(fā)生在網(wǎng)絡(luò)的參數(shù)存儲空間過大或者網(wǎng)絡(luò)的卷積層過多的時(shí)候。這種情況下應(yīng)當(dāng)縮小網(wǎng)絡(luò)規(guī)模。

損失函數(shù)和訓(xùn)練算法

學(xué)習(xí)分兩個(gè)步驟進(jìn)行。第一步,向網(wǎng)絡(luò)展示圖像,然后由神經(jīng)元網(wǎng)絡(luò)處理這些圖像生成一個(gè)輸出矢量。輸出矢量的最大值表示檢測到的對象類,例如示例中的“狗”,該值不一定是正確的。這一步稱為前向傳播。

目標(biāo)值與輸出時(shí)產(chǎn)生的實(shí)際值之間的差值稱為損失,相關(guān)函數(shù)則稱為損失函數(shù)。網(wǎng)絡(luò)的所有要素和參數(shù)均包含在損失函數(shù)中。神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)過程旨在以最小化損失函數(shù)的方式定義這些參數(shù)。這種最小化可通過反向傳播的過程實(shí)現(xiàn)。在反向傳播的過程中,輸出產(chǎn)生的偏置(損失 = 目標(biāo)值-實(shí)際值)通過網(wǎng)絡(luò)的各層反饋,直至達(dá)到網(wǎng)絡(luò)的起始層。

因此,前向傳播和反向傳播在訓(xùn)練過程中產(chǎn)生了一個(gè)可以逐步確定濾波器矩陣參數(shù)的循環(huán)。這種循環(huán)過程會不斷重復(fù),直至損失值降至一定程度以下。

優(yōu)化算法、梯度和梯度下降法

為說明訓(xùn)練過程,圖3顯示了一個(gè)包含x和y兩個(gè)參數(shù)的損失函數(shù)的示例,這里z軸對應(yīng)于損失。如果我們仔細(xì)查看該損失函數(shù)的三維函數(shù)圖,我們就會發(fā)現(xiàn)這個(gè)函數(shù)有一個(gè)全局最小值和一個(gè)局部最小值。

目前,有大量數(shù)值優(yōu)化算法可用于確定權(quán)重和偏置。其中,梯度下降法最為簡單。梯度下降法的理念是使用梯度算子在逐步訓(xùn)練的過程中找到一條通向全局最小值的路徑,該路徑的起點(diǎn)從損失函數(shù)中隨機(jī)選擇。梯度算子是一個(gè)數(shù)學(xué)運(yùn)算符,它會在損失函數(shù)的每個(gè)點(diǎn)生成一個(gè)梯度矢量。該矢量的方向指向函數(shù)值變化最大的方向,幅度對應(yīng)于函數(shù)值的變化程度。在圖3的函數(shù)中,右下角(紅色箭頭處)由于表面平坦,因此梯度矢量的幅度較小。而接近峰值時(shí)的情況則完全不同。此處矢量(綠色箭頭)的方向急劇向下,并且由于此處高低差明顯,梯度矢量的幅度也較大。

1681808501810374.png

圖3.使用梯度下降法確定到最小值的不同路徑。

因此我們可以利用梯度下降法從任意選定的起點(diǎn)開始以迭代的方式尋找下降至山谷的最陡峭路徑。這意味著優(yōu)化算法會在起點(diǎn)計(jì)算梯度,并沿最陡峭的下降方向前進(jìn)一小步。之后算法會重新計(jì)算該點(diǎn)的梯度,繼續(xù)尋找創(chuàng)建一條從起點(diǎn)到山谷的路徑。這種方法的問題在于起點(diǎn)并非是提前定義的,而是隨機(jī)選擇的。在我們的三維地圖中,某些細(xì)心的讀者會將起點(diǎn)置于函數(shù)圖左側(cè)的某個(gè)位置,以確保路徑的終點(diǎn)為全局最小值(如藍(lán)色路徑所示)。其他兩個(gè)路徑(黃色和橙色)要么非常長,要么終點(diǎn)位于局部最小值。但是,算法必須對成千上萬個(gè)參數(shù)進(jìn)行優(yōu)化,顯然起點(diǎn)的選擇不可能每次都碰巧正確。在具體實(shí)踐中,這種方法用處不大。因?yàn)樗x擇的起點(diǎn)可能會導(dǎo)致路徑(即訓(xùn)練時(shí)間)較長,或者目標(biāo)點(diǎn)并不位于全局最小值,導(dǎo)致網(wǎng)絡(luò)的精度下降。

因此,為避免上述問題,過去幾年已開發(fā)出大量可作為替代的優(yōu)化算法。一些替代的方法包括隨機(jī)梯度下降法、動量法、AdaGrad方法、RMSProp方法、Adam方法等。鑒于每種算法都有其特定的優(yōu)缺點(diǎn),實(shí)踐中具體使用的算法將由網(wǎng)絡(luò)開發(fā)人員決定。

訓(xùn)練數(shù)據(jù)

在訓(xùn)練過程中,我們會向網(wǎng)絡(luò)提供標(biāo)有正確對象類的圖像,如汽車、輪船等。本例使用了已有的CIFAR-10數(shù)據(jù)集。當(dāng)然,在具體實(shí)踐中,人工智能可能會用于識別貓、狗和汽車之外的領(lǐng)域。這可能需要開發(fā)新應(yīng)用,例如檢測制造過程中螺釘?shù)馁|(zhì)量必須使用能夠區(qū)分好壞螺釘?shù)挠?xùn)練數(shù)據(jù)對網(wǎng)絡(luò)進(jìn)行訓(xùn)練。創(chuàng)建此類數(shù)據(jù)集極其耗時(shí)費(fèi)力,往往是開發(fā)人工智能應(yīng)用過程中成本最高的一步。編譯完成的數(shù)據(jù)集分為訓(xùn)練數(shù)據(jù)集和測試數(shù)據(jù)集。訓(xùn)練數(shù)據(jù)集用于訓(xùn)練,而測試數(shù)據(jù)則用于在開發(fā)過程的最后檢查訓(xùn)練好的網(wǎng)絡(luò)的功能。

結(jié)論

本系列文章的第一部分《人工智能簡介:什么是機(jī)器學(xué)習(xí)?——第一部分》介紹了神經(jīng)網(wǎng)絡(luò)并對其設(shè)計(jì)和功能進(jìn)行了詳細(xì)探討。本文則定義了函數(shù)所需的所有權(quán)重和偏置,因此現(xiàn)在可以假定網(wǎng)絡(luò)能夠正常運(yùn)行。在后續(xù)第三部分的文章中,我們將通過硬件運(yùn)行神經(jīng)網(wǎng)絡(luò)以測試其識別貓的能力。這里我們將使用ADI公司開發(fā)的帶硬件CNN加速器的MAX78000人工智能微控制器來進(jìn)行演示。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • ADI
    ADI
    +關(guān)注

    關(guān)注

    144

    文章

    45812

    瀏覽量

    248880
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4765

    瀏覽量

    100561
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8382

    瀏覽量

    132438
收藏 人收藏

    評論

    相關(guān)推薦

    神經(jīng)網(wǎng)絡(luò)教程(李亞非)

      第1章 概述  1.1 人工神經(jīng)網(wǎng)絡(luò)研究與發(fā)展  1.2 生物神經(jīng)元  1.3 人工神經(jīng)網(wǎng)絡(luò)的構(gòu)成  第2章人工神經(jīng)網(wǎng)絡(luò)基本模型  2.1 MP模型  2.2 感知器模型  2.3
    發(fā)表于 03-20 11:32

    神經(jīng)網(wǎng)絡(luò)簡介

    神經(jīng)網(wǎng)絡(luò)簡介
    發(fā)表于 08-05 21:01

    【PYNQ-Z2試用體驗(yàn)】神經(jīng)網(wǎng)絡(luò)基礎(chǔ)知識

    學(xué)習(xí)和認(rèn)知科學(xué)領(lǐng)域,是一種模仿生物神經(jīng)網(wǎng)絡(luò)(動物的中樞神經(jīng)系統(tǒng),特別是大腦)的結(jié)構(gòu)和功能的數(shù)學(xué)模型或計(jì)算模型,用于對函數(shù)進(jìn)行估計(jì)或近似。神經(jīng)網(wǎng)絡(luò)由大量的人工
    發(fā)表于 03-03 22:10

    卷積神經(jīng)網(wǎng)絡(luò)如何使用

    卷積神經(jīng)網(wǎng)絡(luò)(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡(luò)在工程上經(jīng)歷了曲折的歷史,您為什么還會在意它呢? 對于這些非常中肯的問題,我們似乎可以給出相對簡明的答案。
    發(fā)表于 07-17 07:21

    【案例分享】ART神經(jīng)網(wǎng)絡(luò)與SOM神經(jīng)網(wǎng)絡(luò)

    今天學(xué)習(xí)了兩個(gè)神經(jīng)網(wǎng)絡(luò),分別是自適應(yīng)諧振(ART)神經(jīng)網(wǎng)絡(luò)與自組織映射(SOM)神經(jīng)網(wǎng)絡(luò)。整體感覺不是很難,只不過一些最基礎(chǔ)的概念容易理解不清。首先ART神經(jīng)網(wǎng)絡(luò)是競爭學(xué)習(xí)的一個(gè)代表,
    發(fā)表于 07-21 04:30

    TensorFlow常用Python擴(kuò)展包

    TensorFlow 能夠?qū)崿F(xiàn)大部分神經(jīng)網(wǎng)絡(luò)功能。但是,這還是不夠的。對于預(yù)處理任務(wù)、序列化甚至繪圖任務(wù),還需要更多的 Python 包。下面列出了一些常用的 Python 包:Numpy:這是用
    發(fā)表于 07-28 14:35

    如何構(gòu)建神經(jīng)網(wǎng)絡(luò)

    原文鏈接:http://tecdat.cn/?p=5725 神經(jīng)網(wǎng)絡(luò)是一種基于現(xiàn)有數(shù)據(jù)創(chuàng)建預(yù)測的計(jì)算系統(tǒng)。如何構(gòu)建神經(jīng)網(wǎng)絡(luò)神經(jīng)網(wǎng)絡(luò)包括:輸入層:根據(jù)現(xiàn)有數(shù)據(jù)獲取輸入的層隱藏層:使用反向傳播優(yōu)化輸入變量權(quán)重的層,以提高模型的預(yù)測
    發(fā)表于 07-12 08:02

    基于BP神經(jīng)網(wǎng)絡(luò)的PID控制

    最近在學(xué)習(xí)電機(jī)的智能控制,上周學(xué)習(xí)了基于單神經(jīng)元的PID控制,這周研究基于BP神經(jīng)網(wǎng)絡(luò)的PID控制。神經(jīng)網(wǎng)絡(luò)具有任意非線性表達(dá)能力,可以通過對系統(tǒng)性能的學(xué)習(xí)來實(shí)現(xiàn)具有最佳組合的PID控制。利用BP
    發(fā)表于 09-07 07:43

    AI芯片正擴(kuò)展到智能手機(jī)、個(gè)人電腦、汽車等領(lǐng)域

    ·庫伯(Gordon Cooper)說:“蘋果把神經(jīng)網(wǎng)絡(luò)植入了iPhone X中,現(xiàn)在每個(gè)人都想擁有神經(jīng)網(wǎng)絡(luò)功能?!?/div>
    的頭像 發(fā)表于 04-19 14:36 ?4657次閱讀

    前向多層人工神經(jīng)網(wǎng)絡(luò)的原理功能和算法等詳細(xì)資料免費(fèi)下載

    ANN的主要功能之一 —— 模式識別 ( Pattern Recognition ) 模式識別是人類的一項(xiàng)基本智能行為,在日常生活中,我們幾乎時(shí)刻在進(jìn)行著“模式識別”。 廣義地說,存在于時(shí)間
    發(fā)表于 08-10 08:00 ?12次下載

    分析深度學(xué)習(xí)技術(shù)現(xiàn)狀,研判深度學(xué)習(xí)發(fā)展趨勢

    深度神經(jīng)網(wǎng)絡(luò)節(jié)點(diǎn)功能不斷豐富。為了克服目前神經(jīng)網(wǎng)絡(luò)存在的局限性,業(yè)界探索并提出了新型神經(jīng)網(wǎng)絡(luò)節(jié)點(diǎn),使得神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 04-13 11:06 ?1.6w次閱讀

    機(jī)器視覺新突破,神經(jīng)網(wǎng)絡(luò)讓圖像處理速度大幅提升

    據(jù)外媒報(bào)道,維也納大學(xué)的研究人員研發(fā)了一種兼顧神經(jīng)網(wǎng)絡(luò)功能的圖像傳感器,該傳感器可以使圖像分析速度相較傳統(tǒng)方式提升近2萬倍。
    的頭像 發(fā)表于 03-06 15:58 ?2945次閱讀

    計(jì)算機(jī)的發(fā)展概況及常用的碼制與微型計(jì)算機(jī)的工作過程詳細(xì)說明

    自1946年第一臺電子計(jì)算機(jī)出現(xiàn)至今,經(jīng)歷了電子管計(jì)算機(jī)、晶體管計(jì)算機(jī)、集成電路計(jì)算機(jī)、大規(guī)模/超大規(guī)模集成電路計(jì)算機(jī),并開始了以神經(jīng)網(wǎng)絡(luò)功能為基礎(chǔ)的第五代計(jì)算機(jī)的研究。
    發(fā)表于 06-30 08:00 ?0次下載
    計(jì)算機(jī)的發(fā)展概況及常用的碼制與微型計(jì)算機(jī)的工作過程詳細(xì)說明

    6種線束設(shè)計(jì)階段降成本方案

    汽車線束指整車所有的線束, 含電器盒在內(nèi)。汽車線束由導(dǎo)線、連接器、端子、護(hù)套、膠帶、熱縮管、熔斷器、繼電器、波紋管、PVC 管及保險(xiǎn)盒等附件組成, 起到汽車神經(jīng)網(wǎng)絡(luò)功能、傳遞信號及執(zhí)行電能作用。
    發(fā)表于 04-23 16:47 ?1129次閱讀
    6種線束設(shè)計(jì)階段降成本方案

    rnn是遞歸神經(jīng)網(wǎng)絡(luò)還是循環(huán)神經(jīng)網(wǎng)絡(luò)

    RNN(Recurrent Neural Network)是循環(huán)神經(jīng)網(wǎng)絡(luò),而非遞歸神經(jīng)網(wǎng)絡(luò)。循環(huán)神經(jīng)網(wǎng)絡(luò)是一種具有時(shí)間序列特性的神經(jīng)網(wǎng)絡(luò),能夠處理序列數(shù)據(jù),具有記憶
    的頭像 發(fā)表于 07-05 09:52 ?503次閱讀