精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

卷積神經網絡算法三大類

工程師鄧生 ? 來源:未知 ? 作者:劉芹 ? 2023-08-21 16:50 ? 次閱讀

卷積神經網絡算法三大類

卷積神經網絡(Convolutional Neural Network,簡稱CNN)是一種常用的人工神經網絡,它的主要應用領域是圖像識別和計算機視覺方面。CNN通過卷積層、池化層和全連接層等組成,這些組成形成了 CNN 的算法三大類,即卷積層、池化層和全連接層。下面,本文將著重講解 CNN 的算法三大類。

一、卷積層

卷積層是卷積神經網絡最重要的部分之一,它是由一組過濾器或卷積核組成的。卷積核的作用就是掃描整張圖像的各個像素點,然后提取其中的特征,這些特征可以是邊緣、角、顏色、紋理、線條等等。卷積核在掃描時,每掃描一次就移動一定的步長,通常步長為1,也可以是其他的值。卷積核掃描圖像時,會在每個窗口區域上做卷積運算,然后再進行匯集。

其中,f和w分別是圖像和卷積核,卷積核大小為k x k,步長為s,偏置項為b,輸出特征圖的大小為 (n-k)/s +1。

卷積操作的目的是對特征進行有效提取,由于卷積層可以有效提取對于某些特征比較敏感的像素值,因此卷積神經網絡的性能可以進一步提高。

二、池化層

卷積層的提取特征效果很好,但是在一張大圖像的處理中,大量的計算對于神經網絡的運行速度帶來了不小的影響,為了解決這個問題,人們提出了池化層。池化層的作用是將圖像的特征進行降維,從而減少神經網絡的參數量,同時也能夠避免某些特征的過度擬合。池化層更多的是一種取樣策略,該層不是直接對圖像進行運算,而是對輸出結果進行采樣。常見的池化方式有最大池化和平均池化。

最大池化:指選取激活值最大的像素作為采樣值,例如 $2 \times 2$ 的矩陣

在最大池化操作中,我們可以采用 $2 \times 2$ 池化器,它將第一行第一列的值和第一行第二列的值做個比較,然后取出最大值。同樣的,它也可以采用第二行第一列和第二行第二列中的最大值

最大池化的尺寸可以設定,一般是選擇 $2 \times 2$ 的池化器。最大池化不僅可以對像素值進行降維處理,而且能夠提取出一些特征,例如它可以提取圖像的強度、顏色等等特征。

平均池化:平均池化與最大值池化很相似,不同的是它并不是直接選擇激活值最大的像素,而是選擇區域內值的平均值。在直覺上,最大池化更適合在數據中選擇有用的特征,而平均池化更加適合一些簡單的分類任務。

三、全連接層

卷積層和池化層只是對圖像的特征進行二維處理,而全連接層是將所有的特征進行展開,并與權重相乘相加。它的作用是將卷積層提取到的圖像特征轉化為特征向量并輸入到分類器中。全連接層和傳統的神經網絡傳輸方式一樣,但不同的是,它是對每個單元都進行了連接處理,因此它需要處理的數據也比較龐大,是四大環節中運算量最大的一個部分。

總結

卷積神經網絡算法可以劃分為三大類:卷積層、池化層和全連接層。卷積層是卷積神經網絡的核心部分,其目的是對特征進行有效提取;池化層是對特征進行降維,從而減少神經網絡的參數量,同時也能夠避免某些特征的過度擬合;全連接層將卷積層提取到的圖像特征轉化為特征向量并輸入到分類器中。卷積神經網絡通過組合不同的層可以實現卓越的性能,在圖像識別、語音識別、自然語言處理等領域都能夠起到非常優秀的作用。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
收藏 人收藏

    評論

    相關推薦

    卷積神經網絡的基本概念、原理及特點

    卷積神經網絡(Convolutional Neural Networks,簡稱CNN)是一種深度學習算法,它在圖像識別、視頻分析、自然語言處理等領域有著廣泛的應用。本文將詳細介紹卷積
    的頭像 發表于 07-11 14:38 ?394次閱讀

    卷積神經網絡的壓縮方法

    ,CNN模型的參數量和計算量也隨之劇增,這對硬件資源提出了嚴峻挑戰。因此,卷積神經網絡的壓縮方法成為了研究熱點。本文將從多個角度詳細介紹卷積神經網絡的壓縮方法,包括前端壓縮和后端壓縮兩
    的頭像 發表于 07-11 11:46 ?172次閱讀

    BP神經網絡卷積神經網絡的關系

    BP神經網絡(Backpropagation Neural Network)和卷積神經網絡(Convolutional Neural Network,簡稱CNN)是兩種在人工智能和機器學習領域
    的頭像 發表于 07-10 15:24 ?576次閱讀

    循環神經網絡卷積神經網絡的區別

    循環神經網絡(Recurrent Neural Network,RNN)和卷積神經網絡(Convolutional Neural Network,CNN)是深度學習領域中兩種非常重要的神經網絡
    的頭像 發表于 07-04 14:24 ?511次閱讀

    卷積神經網絡和bp神經網絡的區別在哪

    結構、原理、應用場景等方面都存在一定的差異。以下是對這兩種神經網絡的詳細比較: 基本結構 BP神經網絡是一種多層前饋神經網絡,由輸入層、隱藏層和輸出層組成。每個神經元之間通過權重連接,
    的頭像 發表于 07-04 09:49 ?8407次閱讀

    卷積神經網絡的實現原理

    卷積神經網絡(Convolutional Neural Networks,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、視頻分析、自然語言處理等領域。本文將詳細介紹卷積神經網絡
    的頭像 發表于 07-03 10:49 ?388次閱讀

    bp神經網絡卷積神經網絡區別是什么

    結構、原理、應用場景等方面都存在一定的差異。以下是對這兩種神經網絡的比較: 基本結構 BP神經網絡是一種多層前饋神經網絡,由輸入層、隱藏層和輸出層組成。每個神經元之間通過權重連接,并通
    的頭像 發表于 07-03 10:12 ?520次閱讀

    卷積神經網絡分類方法有哪些

    卷積神經網絡(Convolutional Neural Networks,CNN)是一種深度學習模型,廣泛應用于圖像分類、目標檢測、語義分割等計算機視覺任務。本文將詳細介紹卷積神經網絡
    的頭像 發表于 07-03 09:40 ?265次閱讀

    卷積神經網絡訓練的是什么

    卷積神經網絡(Convolutional Neural Networks,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、視頻分析、自然語言處理等領域。本文將詳細介紹卷積神經網絡
    的頭像 發表于 07-03 09:15 ?220次閱讀

    卷積神經網絡的原理與實現

    1.卷積神經網絡(Convolutional Neural Networks,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、視頻分析、自然語言處理等領域。 卷積神經網絡是一種前饋
    的頭像 發表于 07-02 16:47 ?325次閱讀

    卷積神經網絡的基本結構及其功能

    卷積神經網絡(Convolutional Neural Network,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、視頻分析、自然語言處理等領域。本文將詳細介紹卷積神經網絡的基
    的頭像 發表于 07-02 14:45 ?536次閱讀

    卷積神經網絡的原理是什么

    卷積神經網絡(Convolutional Neural Network,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、語音識別、自然語言處理等領域。本文將詳細介紹卷積神經網絡的原
    的頭像 發表于 07-02 14:44 ?353次閱讀

    卷積神經網絡和bp神經網絡的區別

    卷積神經網絡(Convolutional Neural Networks,簡稱CNN)和BP神經網絡(Backpropagation Neural Networks,簡稱BPNN)是兩種
    的頭像 發表于 07-02 14:24 ?1019次閱讀

    卷積神經網絡的優點

    卷積神經網絡的優點? 卷積神經網絡(Convolutional Neural Network,CNN)是一種基于深度學習的神經網絡模型,在圖
    的頭像 發表于 12-07 15:37 ?3751次閱讀

    卷積神經網絡通俗理解

    卷積神經網絡(Convolutional Neural Networks, CNN)是一包含卷積計算且具有深度結構的前饋神經網絡(Feed
    的頭像 發表于 11-26 16:26 ?890次閱讀